Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
CHEN Zhe-xue, WANG Wei-biao, LIANG Cheng, ZHANG Yong. Progress on two-dimensional quantum sheets and their optics[J]. Chinese Optics, 2021, 14(1): 1-17. doi: 10.37188/CO.2020-0176
Citation: CHEN Zhe-xue, WANG Wei-biao, LIANG Cheng, ZHANG Yong. Progress on two-dimensional quantum sheets and their optics[J]. Chinese Optics, 2021, 14(1): 1-17. doi: 10.37188/CO.2020-0176

Progress on two-dimensional quantum sheets and their optics

Funds:  Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), National Key R&D Program of China (No. 2018YFA0703700), National Natural Science Foundation of China (No. 61575049), 100-Talent Program of Chinese Academy of Sciences, Start-Up Funding from National Center for Nanoscience and Technology
More Information
  • Corresponding author: zhangyong@nanoctr.cn
  • Received Date: 30 Sep 2020
  • Rev Recd Date: 09 Nov 2020
  • Available Online: 14 Jan 2021
  • Publish Date: 25 Jan 2021
  • Two-dimensional (2D) materials like graphene have attracted much attention due to their unique structures and exotic properties. With significantly reduced lateral sizes, 2D quantum sheets (2D QSs) are attracting an increasing level of interest. 2D QSs have opportunities for new applications because of their intrinsic characteristics of being 2D materials and having emerging quantum confinement and prominent edge effects. This review focuses on the conceptual interpretation of 2D QSs and the recent progress on their preparation and optical properties. Particular focus is given to the realization and significance of the universal and scalable production of intrinsic 2D QSs. In addition, the photoluminescence of 2D QSs and their applications in nonlinear optics and solid-state light-emitting devices are reviewed. At the end, the perspectives and challenges towards the future development of 2D QSs are discussed.

     

  • loading
  • [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [2]
    ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098. doi: 10.1038/natrevmats.2016.98
    [3]
    TAN CH L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. doi: 10.1021/acs.chemrev.6b00558
    [4]
    XU Y H, WANG X X, ZHANG W L, et al. Recent progress in two-dimensional inorganic quantum dots[J]. Chemical Society Reviews, 2018, 47(2): 586-625. doi: 10.1039/C7CS00500H
    [5]
    ASHTON M, PAUL J, SINNOTT S B, et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials[J]. Physical Review Letters, 2017, 118(10): 106101. doi: 10.1103/PhysRevLett.118.106101
    [6]
    WANG X M, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 2015, 10(6): 517-521. doi: 10.1038/nnano.2015.71
    [7]
    TAN CH L, ZHANG H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J]. Chemical Society Reviews, 2015, 44(9): 2713-2731. doi: 10.1039/C4CS00182F
    [8]
    NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439.
    [9]
    LIU Y, WEISS N O, DUAN X D, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9): 16042.
    [10]
    HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270-273. doi: 10.1038/nature22391
    [11]
    CAO Y, FATEMI V, FANG S A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. doi: 10.1038/nature26160
    [12]
    BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. doi: 10.1126/science.1246501
    [13]
    BHIMANAPATI G R, LIN ZH, MEUNIER V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12): 11509-11539. doi: 10.1021/acsnano.5b05556
    [14]
    ZHU F F, CHEN W J, XU Y, et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials, 2015, 14(10): 1020-1025. doi: 10.1038/nmat4384
    [15]
    DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. doi: 10.1021/acs.chemrev.8b00056
    [16]
    LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798
    [17]
    PENG D, ZHANG L, LI F F, et al. Facile and green approach to the synthesis of boron nitride quantum dots for 2, 4, 6-trinitrophenol sensing[J]. ACS Applied Materials &Interfaces, 2018, 10(8): 7315-7323.
    [18]
    NAJAFI L, TAHERI B, MARTíN-GARCÍA B, et al. MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%[J]. ACS Nano, 2018, 12(11): 10736-10754. doi: 10.1021/acsnano.8b05514
    [19]
    YONG Y, CHENG X J, BAO T, et al. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy[J]. ACS Nano, 2015, 9(12): 12451-12463. doi: 10.1021/acsnano.5b05825
    [20]
    HA H D, HAN D J, CHOI J S, et al. Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon[J]. Small, 2014, 10(19): 3858-3862. doi: 10.1002/smll.201400988
    [21]
    ZHOU J B, LIN J H, HUANG X W, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701): 355-359. doi: 10.1038/s41586-018-0008-3
    [22]
    WANG L, XU X Z, ZHANG L N, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature, 2019, 570(7759): 91-95. doi: 10.1038/s41586-019-1226-z
    [23]
    XU Y Q, CHEN SH L, DOU ZH P, et al. Robust production of 2D quantum sheets from bulk layered materials[J]. Materials Horizons, 2019, 6(7): 1416-1424. doi: 10.1039/C9MH00272C
    [24]
    BAI L Q, XUE N, ZHAO Y F, et al. Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications[J]. Nano Research, 2018, 11(4): 2034-2045. doi: 10.1007/s12274-017-1820-z
    [25]
    CAO Y, DONG H F, PU SH T, et al. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport[J]. Nano Research, 2018, 11(8): 4074-4081. doi: 10.1007/s12274-018-1990-3
    [26]
    LEI F C, LIU W, SUN Y F, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction[J]. Nature Communications, 2016, 7: 12697. doi: 10.1038/ncomms12697
    [27]
    XU H, ZHANG L, DING Z CH, et al. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells[J]. Nano Research, 2018, 11(8): 4293-4301. doi: 10.1007/s12274-018-2015-y
    [28]
    DEB J, PAUL D, SARKAR U. Density functional theory investigation of nonlinear optical properties of T-graphene quantum dots[J]. The Journal of Physical Chemistry A, 2020, 124(7): 1312-1320. doi: 10.1021/acs.jpca.9b10241
    [29]
    BRANDT O, LAGE H, PLOOG K. Large excitonic nonlinearity in InAs quantum sheets[J]. Applied Physics Letters, 1991, 59(5): 576-578. doi: 10.1063/1.105391
    [30]
    BUTCHER P N, MCINNES J A. The energy dependence of the conductance and scattering wave functions of a 2D quantum dot[J]. Journal of Physics:Condensed Matter, 1995, 7(33): 6717-6726. doi: 10.1088/0953-8984/7/33/010
    [31]
    徐元清, 张勇. 首次实现二维量子片的普适和规模制备[J]. 物理,2019,48(8):522-525. doi: 10.7693/wl20190808

    XU Y Q, ZHANG Y. First demonstration of universal and scalable production of 2D QSs[J]. Physics, 2019, 48(8): 522-525. (in Chinese) doi: 10.7693/wl20190808
    [32]
    ALLEN M J, TUNG V C, KANER R B. Honeycomb Carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. doi: 10.1021/cr900070d
    [33]
    ZHOU X J, GUO SH W, ZHONG P, et al. Large scale production of graphene quantum dots through the reaction of graphene oxide with sodium hypochlorite[J]. RSC Advances, 2016, 6(60): 54644-54648. doi: 10.1039/C6RA06012A
    [34]
    LI H L, TAY R Y, TSANG S H, et al. Controllable synthesis of highly luminescent boron nitride quantum dots[J]. Small, 2015, 11(48): 6491-6499. doi: 10.1002/smll.201501632
    [35]
    DING X G, PENG F, ZHOU J, et al. Defect engineered bioactive transition metals dichalcogenides quantum dots[J]. Nature Communications, 2019, 10: 41. doi: 10.1038/s41467-018-07835-1
    [36]
    SAMADI M, SARIKHANI N, ZIRAK M, et al. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives[J]. Nanoscale Horizons, 2018, 3(2): 90-204. doi: 10.1039/C7NH00137A
    [37]
    SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. doi: 10.1021/nl903868w
    [38]
    WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193
    [39]
    MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J]. Chemical Society Reviews, 2014, 43(18): 6537-6554. doi: 10.1039/C4CS00102H
    [40]
    CHURCHILL H O H, JARILLO-HERRERO P. Phosphorus joins the family[J]. Nature Nanotechnology, 2014, 9(5): 330-331. doi: 10.1038/nnano.2014.85
    [41]
    LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35
    [42]
    WANG Y, WANG X X, XU Y H, et al. Simultaneous synthesis of WO3−x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications[J]. Small, 2017, 13(13): 1603689.
    [43]
    DING D D, GUO W, GUO CH SH, et al. MoO3−x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment[J]. Nanoscale, 2017, 9(5): 2020-2029. doi: 10.1039/C6NR09046J
    [44]
    XUE Q, ZHANG H J, ZHU M SH, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials, 2017, 29(15): 1604847. doi: 10.1002/adma.201604847
    [45]
    LI R J, TANG L B, ZHAO Q, et al. In2S3 quantum dots: preparation, properties and optoelectronic application[J]. Nanoscale Research Letters, 2019, 14: 161. doi: 10.1186/s11671-019-2992-0
    [46]
    HAMER M, TÓVÁRI E, ZHU M J, et al. Gate-defined quantum confinement in InSe-based van der Waals heterostructures[J]. Nano Letters, 2018, 18(6): 3950-3955. doi: 10.1021/acs.nanolett.8b01376
    [47]
    CARTER S G, BRACKER A S, BRYANT G W, et al. Spin-mechanical coupling of an InAs quantum dot embedded in a mechanical resonator[J]. Physical Review Letters, 2018, 121(24): 246801. doi: 10.1103/PhysRevLett.121.246801
    [48]
    RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. doi: 10.1038/nnano.2010.279
    [49]
    BANDURIN D A, TYURNINA A V, YU G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J]. Nature Nanotechnology, 2017, 12(3): 223-227. doi: 10.1038/nnano.2016.242
    [50]
    MILLER T S, JORGE A B, SUTER T M, et al. Carbon nitrides: synthesis and characterization of a new class of functional materials[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 15613-15638. doi: 10.1039/C7CP02711G
    [51]
    ALTAVILLA C, SARNO M, CIAMBELLI P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W)[J]. Chemistry of Materials, 2011, 23(17): 3879-3885. doi: 10.1021/cm200837g
    [52]
    ARSLAN O, BELKOURA L, MATHUR S. Swift synthesis, functionalization and phase-transfer studies of ultrastable, visible light emitting oleate@ZnO quantum dots[J]. Journal of Materials Chemistry C, 2015, 3(45): 11965-11973. doi: 10.1039/C5TC03377B
    [53]
    LI X ZH, FANG Y Y, WANG J, et al. High-yield electrochemical production of large-sized and thinly layered NiPS3 flakes for overall water splitting[J]. Small, 2019, 15(30): 1902427. doi: 10.1002/smll.201902427
    [54]
    GOPALAKRISHNAN D, DAMIEN D, LI B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chemical Communications, 2015, 51(29): 6293-6296. doi: 10.1039/C4CC09826A
    [55]
    WANG W J, YU J C, SHEN ZH R, et al. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application[J]. Chemical Communications, 2014, 50(70): 10148-10150. doi: 10.1039/C4CC02543A
    [56]
    CHENG ZH ZH, SHIFA T A, WANG F M, et al. High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution[J]. Advanced Materials, 2018, 30(26): 1707433. doi: 10.1002/adma.201707433
    [57]
    WANG Y, LIU Y, ZHANG J F, et al. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Science Advances, 2017, 3(12): e1701500. doi: 10.1126/sciadv.1701500
    [58]
    ZHANG J F, ZHU T Y, WANG Y, et al. Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution[J]. Materials Today, 2020, 36: 83-90. doi: 10.1016/j.mattod.2020.02.006
    [59]
    HAO Y, SU W, HOU L X, et al. Monolayer single crystal two-dimensional quantum dots via ultrathin cutting and exfoliating[J]. Science China Materials, 2020, 63(6): 1046-1053. doi: 10.1007/s40843-019-1270-x
    [60]
    HAN CH CH, ZHANG Y, GAO P, et al. High-yield production of MoS2 and WS2 quantum sheets from their bulk materials[J]. Nano Letters, 2017, 17(12): 7767-7772. doi: 10.1021/acs.nanolett.7b03968
    [61]
    SYNNATSCHKE K, CIESLIK P A, HARVEY A, et al. Length- and thickness-dependent optical response of liquid-exfoliated transition metal dichalcogenides[J]. Chemistry of Materials, 2019, 31(24): 10049-10062. doi: 10.1021/acs.chemmater.9b02905
    [62]
    ZHANG X, LAI ZH CH, LIU ZH D, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots[J]. Angewandte Chemie International Edition, 2015, 54(18): 5425-5428. doi: 10.1002/anie.201501071
    [63]
    LIU Y, LIANG CH L, WU J J, et al. Reflux pretreatment-mediated sonication: a new universal route to obtain 2D quantum dots[J]. Materials Today, 2019, 22: 17-24. doi: 10.1016/j.mattod.2018.06.007
    [64]
    XU Y Q, CHANG J Q, LIANG C, et al. Tailoring multi-walled carbon nanotubes into graphene quantum sheets[J]. ACS Applied Materials &Interfaces, 2020, 12(42): 47784-47791.
    [65]
    LIANG CH, SUI X Y, WANG A CH, et al. Controlled production of MoS2 full-scale nanosheets and their strong size effects[J]. Advanced Materials Interfaces, 2020, 7(24): 2001130. doi: 10.1002/admi.202001130
    [66]
    AN T C, TANG J, ZHANG Y Y, et al. Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires[J]. ACS Applied Materials &Interfaces, 2016, 8(20): 12772-12779.
    [67]
    TANG L B, JI R B, LI X M, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots[J]. ACS Nano, 2014, 8(6): 6312-6320. doi: 10.1021/nn501796r
    [68]
    KIM S, HWANG S W, KIM M K, et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape[J]. ACS Nano, 2012, 6(9): 8203-8208. doi: 10.1021/nn302878r
    [69]
    REN J, WEBER F, WEIGERT F, et al. Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots[J]. Nanoscale, 2019, 11(4): 2056-2064. doi: 10.1039/C8NR08595A
    [70]
    LI L L, JI J, FEI R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012, 22(14): 2971-2979. doi: 10.1002/adfm.201200166
    [71]
    ZHOU M, LOU X W, XIE Y. Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities[J]. Nano Today, 2013, 8(6): 598-618. doi: 10.1016/j.nantod.2013.12.002
    [72]
    LIU ZH K, LAU S P, YAN F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chemical Society Reviews, 2015, 44(15): 5638-5679. doi: 10.1039/C4CS00455H
    [73]
    MANIKANDAN A, CHEN Y Z, SHEN C C, et al. A critical review on two-dimensional quantum dots (2D QDs): from synthesis toward applications in energy and optoelectronics[J]. Progress in Quantum Electronics, 2019, 68: 100226. doi: 10.1016/j.pquantelec.2019.100226
    [74]
    SK M A, ANANTHANARAYANAN A, HUANG L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. Journal of Materials Chemistry C, 2014, 2(34): 6954-6960. doi: 10.1039/C4TC01191K
    [75]
    KWON W, KIM Y H, LEE C L, et al. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite[J]. Nano Letters, 2014, 14(3): 1306-1311. doi: 10.1021/nl404281h
    [76]
    JIN S H, KIM D H, JUN G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano, 2013, 7(2): 1239-1245. doi: 10.1021/nn304675g
    [77]
    ZHU X Q, XIANG J X, LI J, et al. Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups[J]. Journal of Colloid and Interface Science, 2018, 511: 209-214. doi: 10.1016/j.jcis.2017.09.118
    [78]
    BASKO D M, DUCHEMIN I, BLASE X. Optical properties of graphene quantum dots: the role of chiral symmetry[J]. 2D Materials, 2020, 7(2): 025041. doi: 10.1088/2053-1583/ab7688
    [79]
    NIU X H, LI Y H, SHU H B, et al. Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots[J]. Nanoscale, 2016, 8(46): 19376-19382. doi: 10.1039/C6NR06447G
    [80]
    YEH T F, TENG C Y, CHEN S J, et al. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination[J]. Advanced Materials, 2014, 26(20): 3297-3303. doi: 10.1002/adma.201305299
    [81]
    TANG J M, SAKAMOTO M, OHTA H, et al. 1% defect enriches MoS2 quantum dot: catalysis and blue luminescence[J]. Nanoscale, 2020, 12(7): 4352-4358. doi: 10.1039/C9NR07612C
    [82]
    QU D, SUN Z CH, ZHENG M, et al. Three colors emission from S, N Co-doped graphene quantum dots for visible light H2 production and bioimaging[J]. Advanced Optical Materials, 2015, 3(3): 360-367. doi: 10.1002/adom.201400549
    [83]
    ZHANG SH, JIA X F, WANG E K. Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots[J]. Nanoscale, 2016, 8(33): 15152-15157. doi: 10.1039/C6NR04726B
    [84]
    AUTERE A, JUSSILA H, DAI Y Y, et al. Nonlinear optics with 2D layered materials[J]. Advanced Materials, 2018, 30(24): 1705963. doi: 10.1002/adma.201705963
    [85]
    LI J L, BAO H CH, HOU X L, et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J]. Angewandte Chemie International Edition, 2012, 51(8): 1830-1834. doi: 10.1002/anie.201106102
    [86]
    SUN J H, GU Y J, LEI D Y, et al. Mechanistic understanding of excitation-correlated nonlinear optical properties in MoS2 nanosheets and nanodots: the role of exciton resonance[J]. ACS Photonics, 2016, 3(12): 2434-2444. doi: 10.1021/acsphotonics.6b00682
    [87]
    LIU Q, GUO B D, RAO Z Y, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Letters, 2013, 13(6): 2436-2441. doi: 10.1021/nl400368v
    [88]
    COX J D, SILVEIRO I, DE ABAJO F J G. Quantum effects in the nonlinear response of graphene plasmons[J]. ACS Nano, 2016, 10(2): 1995-2003. doi: 10.1021/acsnano.5b06110
    [89]
    COX J D, DE ABAJO F J G. Plasmon-enhanced nonlinear wave mixing in nanostructured graphene[J]. ACS Photonics, 2015, 2(2): 306-312. doi: 10.1021/ph500424a
    [90]
    GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758. doi: 10.1038/nphoton.2012.262
    [91]
    LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 2017, 16(2): 182-194. doi: 10.1038/nmat4792
    [92]
    WANG Y W, LIU S, ZENG B W, et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots[J]. Nanoscale, 2017, 9(14): 4683-4690. doi: 10.1039/C6NR09235G
    [93]
    CHEN X, PONRAJ J S, FAN D Y, et al. An overview of the optical properties and applications of black phosphorus[J]. Nanoscale, 2020, 12(6): 3513-3534. doi: 10.1039/C9NR09122J
    [94]
    XU Y H, WANG ZH T, GUO ZH N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229. doi: 10.1002/adom.201600214
    [95]
    LU S B, MIAO L L, GUO Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194. doi: 10.1364/OE.23.011183
    [96]
    LU L, TANG X, CAO R, et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability[J]. Advanced Optical Materials, 2017, 5(17): 1700301. doi: 10.1002/adom.201700301
    [97]
    WANG SH X, YU H H, ZHANG H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi: 10.1002/adma.201306322
    [98]
    ZHANG Y, WANG J J, BALLANTINE K E, et al. Hybrid plasmonic nanostructures with unconventional nonlinear optical properties[J]. Advanced Optical Materials, 2014, 2(4): 331-337. doi: 10.1002/adom.201300503
    [99]
    WANG F, ROZHIN A G, SCARDACI V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser[J]. Nature Nanotechnology, 2008, 3(12): 738-742. doi: 10.1038/nnano.2008.312
    [100]
    BAO Q L, ZHANG H, NI ZH H, et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J]. Nano Research, 2011, 4(3): 297-307. doi: 10.1007/s12274-010-0082-9
    [101]
    SU L M, FAN X, YIN T, et al. Inorganic 2D luminescent materials: structure, luminescence modulation, and applications[J]. Advanced Optical Materials, 2020, 8(1): 1900978. doi: 10.1002/adom.201900978
    [102]
    ZHENG J L, YANG ZH H, SI C, et al. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability[J]. ACS Photonics, 2017, 4(6): 1466-1476. doi: 10.1021/acsphotonics.7b00231
    [103]
    WANG X T, CUI Y, LI T, et al. Recent advances in the functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(3): 1801274. doi: 10.1002/adom.201801274
    [104]
    LEE Y J, YEH T W, ZOU CH, et al. Graphene quantum dot vertical cavity surface-emitting lasers[J]. ACS Photonics, 2019, 6(11): 2894-2901. doi: 10.1021/acsphotonics.9b00976
    [105]
    孙俊杰, 陈飞, 何洋, 等. 新型过渡金属硫化物在超快激光中的应用[J]. 中国光学,2020,13(4):647-659. doi: 10.37188/CO.2019-0241

    SUN J J, CHEN F, HE Y, et al. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. (in Chinese) doi: 10.37188/CO.2019-0241
    [106]
    YANG Y F, HU H W, WU M J, et al. Stretchable and broadband cavity-free lasers based on all 2D metamaterials[J]. Advanced Optical Materials, 2020, 8(7): 1901326. doi: 10.1002/adom.201901326
    [107]
    GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. doi: 10.1038/nature13970
    [108]
    DING L, WEI Y Y, LI L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9: 155. doi: 10.1038/s41467-017-02529-6
    [109]
    JIANG Q, WU CH SH, WANG ZH J, et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit[J]. Nano Energy, 2018, 45: 266-272. doi: 10.1016/j.nanoen.2018.01.004
    [110]
    HUANG D P, XIE Y, LU D ZH, et al. Demonstration of a white laser with V2C MXene-based quantum dots[J]. Advanced Materials, 2019, 31(24): 1901117.
    [111]
    ZHANG H, ROGERS J A. Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms[J]. Advanced Optical Materials, 2019, 7(2): 1800936. doi: 10.1002/adom.201800936
    [112]
    LU G ZH, WU M J, LIN T N, et al. Electrically pumped white-light-emitting diodes based on histidine-doped MoS2 quantum dots[J]. Small, 2019, 15(30): 1901908. doi: 10.1002/smll.201901908
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(5831) PDF downloads(623) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return