Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LYU Mei, ZHANG Li, ZHANG Yan, YUAN Ming-jian. Strategies for improving the stability of quantum dots light-emitting diodes[J]. Chinese Optics, 2021, 14(1): 117-134. doi: 10.37188/CO.2020-0184
Citation: LYU Mei, ZHANG Li, ZHANG Yan, YUAN Ming-jian. Strategies for improving the stability of quantum dots light-emitting diodes[J]. Chinese Optics, 2021, 14(1): 117-134. doi: 10.37188/CO.2020-0184

Strategies for improving the stability of quantum dots light-emitting diodes

Funds:  Supported by National Science Foundation of Tianjin (No. 17JCYBJC40900, No. 18YFZCGX00580)
More Information
  • Quantum dot Light-Emitting Diodes (QLEDs) are applied to the lighting and display industry for their unique photoelectric characteristics. Their External Quantum Efficiency (EQEs) is quickly meeting commercial requirements while the device’s lifetime is still one of their biggest challenges. The significant factors affecting the lifetime of QLEDs are divided into two aspects including the stability of the functional layer’s materials and charge imbalance. Various strategies for enhancing QLEDs stability are discussed including improving the stability of quantum dots, implementing Charge Transport Layers (CTLs) and promoting charge balance. With the deepening understanding of the degradation mechanism of QLEDs, more stable quantum dots and QLEDs devices have been developed. However, there are still some obstacles to the commercialization of QLEDs. For example, the high toxicity of Cd and the lifetime and efficiency of blue QLEDs are far lower than the corresponding levels of green and red QLEDs. In addition, the stability of QLEDs at high brightness (1000 cd m−2) is usually much shorter, which still limits the development of QLEDs. Therefore, research and development efforts for QLEDs should be further strengthened to overcome these technical obstacles and achieve the future commercialization of QLEDs.

     

  • loading
  • [1]
    DAI X L, ZHANG ZH X, JIN Y ZH, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525): 96-99. doi: 10.1038/nature13829
    [2]
    SHEN H B, GAO Q, ZHANG Y B, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J]. Nature Photonics, 2019, 13(3): 192-197. doi: 10.1038/s41566-019-0364-z
    [3]
    LI X Y, ZHAO Y B, FAN F J, et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination[J]. Nature Photonics, 2018, 12(3): 159-164. doi: 10.1038/s41566-018-0105-8
    [4]
    JI W Y, JING P T, XU W, et al. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure[J]. Applied Physics Letters, 2013, 103(5): 053106. doi: 10.1063/1.4817086
    [5]
    COLVIN V, SCHLAMP M, ALIVISATOS A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370(6488): 354-357. doi: 10.1038/370354a0
    [6]
    SONG J J, WANG O Y, SHEN H B, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer[J]. Advanced Functional Materials, 2019, 29(33): 1808377. doi: 10.1002/adfm.201808377
    [7]
    LI X Y, LIN Q L, SONG J J, et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness[J]. Advanced Optical Materials, 2020, 8(2): 1901145. doi: 10.1002/adom.201901145
    [8]
    CAO W R, XIANG CH Y, YANG Y X, et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring[J]. Nature Communications, 2018, 9(1): 2608. doi: 10.1038/s41467-018-04986-z
    [9]
    MOON H, LEE C, LEE W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications[J]. Advanced Materials, 2019, 31(34): 1804294. doi: 10.1002/adma.201804294
    [10]
    SUN Y ZH, JIANG Y B, SUN X W, et al. Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application[J]. The Chemical Reccord, 2019, 19(8): 1729-1752. doi: 10.1002/tcr.201800191
    [11]
    DEMBSKI S, GRAF C, KRÜGER T, et al. Photoactivation of CdSe/ZnS quantum dots embedded in silica colloids[J]. Small, 2008, 4(9): 1516-1526. doi: 10.1002/smll.200700997
    [12]
    CARRILLO-CARRIÓN C, CÁRDENAS S, SIMONET B M, et al. Quantum dots luminescence enhancement due to illumination with UV/Vis light[J]. Chemical Communications, 2009(35): 5214-5226. doi: 10.1039/b904381k
    [13]
    PECHSTEDT K, WHITTLE T, BAUMBERG J, et al. Photoluminescence of colloidal CdSe/ZnS quantum dots: the critical effect of water molecules[J]. The Journal of Physical Chemistry C, 2010, 114(28): 12069-12077. doi: 10.1021/jp100415k
    [14]
    MÜLLER J, LUPTON J M, ROGACH A L, et al. Air-induced fluorescence bursts from single semiconductor nanocrystals[J]. Applied Physics Letters, 2004, 85(3): 381-383. doi: 10.1063/1.1769585
    [15]
    KIM D, FU Y, KIM S, et al. Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device[J]. ACS Nano, 2017, 11(2): 1982-1990. doi: 10.1021/acsnano.6b08142
    [16]
    KIM J H, HAN C Y, LEE K H, et al. Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer[J]. Chemistry of Materials, 2015, 27(1): 197-204. doi: 10.1021/cm503756q
    [17]
    SONG J ZH, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567
    [18]
    ZHAO Y M, RIEMERSMA C, PIETRA F, et al. High-temperature luminescence quenching of colloidal quantum dots[J]. ACS Nano, 2012, 6(10): 9058-9067. doi: 10.1021/nn303217q
    [19]
    MISZTA K, DORFS D, GENOVESE A, et al. Cation exchange reactions in colloidal branched nanocrystals[J]. ACS Nano, 2011, 5(9): 7176-7183. doi: 10.1021/nn201988w
    [20]
    ROWLAND C E, LIU W Y, HANNAH D C, et al. Thermal stability of colloidal InP nanocrystals: small inorganic ligands boost high-temperature photoluminescence[J]. ACS Nano, 2014, 8(1): 977-985. doi: 10.1021/nn405811p
    [21]
    DAVIDSON-HALL T, AZIZ H. The role of excitons within the hole transporting layer in quantum dot light emitting device degradation[J]. Nanoscale, 2019, 11(17): 8310-8318. doi: 10.1039/C8NR09560D
    [22]
    CHEN S, CAO W R, LIU T L, et al. On the degradation mechanisms of quantum-dot light-emitting diodes[J]. Nature Communications, 2019, 10(1): 765. doi: 10.1038/s41467-019-08749-2
    [23]
    ZHANG D D, DUAN L, LI CH, et al. High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet–triplet exchange energy[J]. Advanced Materials, 2014, 26(29): 5050-5055. doi: 10.1002/adma.201401476
    [24]
    CHEN F, GUAN ZH Y, TANG A W. Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes[J]. Journal of Materials Chemistry C, 2018, 6(41): 10958-10981. doi: 10.1039/C8TC04028A
    [25]
    YOU J B, MENG L, SONG T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nature Nanotechnology, 2016, 11(1): 75-81. doi: 10.1038/nnano.2015.230
    [26]
    YANG W G, HUANG X J, HARDER R, et al. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure[J]. Nature Communications, 2013, 4(1): 1680. doi: 10.1038/ncomms2661
    [27]
    KIM S, KIM J, KIM D, et al. High-performance transparent quantum dot light-emitting diode with patchable transparent electrodes[J]. ACS Applied Materials &Interfaces, 2019, 11(29): 26333-26338.
    [28]
    CUN Y K, MAI CH H, LUO Y, et al. All-solution processed high performance inverted quantum dot light emitting diodes[J]. Journal of Materials Chemistry C, 2020, 8(12): 4264-4270. doi: 10.1039/C9TC06850C
    [29]
    CAO F, WANG H R, SHEN P Y, et al. High-efficiency and stable quantum dot light-emitting diodes enabled by a solution-processed metal-doped nickel oxide hole injection interfacial layer[J]. Advanced Functional Materials, 2017, 27(42): 1704278. doi: 10.1002/adfm.201704278
    [30]
    SHI Y L, LIANG F, HU Y, et al. High performance blue quantum dot light-emitting diodes employing polyethylenimine ethoxylated as the interfacial modifier[J]. Nanoscale, 2017, 9(39): 14792-14797. doi: 10.1039/C7NR04542E
    [31]
    QIAN L, ZHENG Y, CHOUDHURY K R, et al. Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages[J]. Nano Today, 2010, 5(5): 384-389. doi: 10.1016/j.nantod.2010.08.010
    [32]
    JAVAUX C, MAHLER B, DUBERTRET B, et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals[J]. Nature Nanotechnology, 2013, 8(3): 206-212. doi: 10.1038/nnano.2012.260
    [33]
    CHANG J H, PARK P, JUNG H, et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes[J]. ACS Nano, 2018, 12(10): 10231-10239. doi: 10.1021/acsnano.8b03386
    [34]
    YE Y X, ZHENG X R, CHEN D S, et al. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4649-4654. doi: 10.1021/acs.jpclett.0c01323
    [35]
    XUE X L, DONG J Y, WANG SH P, et al. Degradation of quantum dot light emitting diodes, the case under a low driving level[J]. Journal of Materials Chemistry C, 2020, 8(6): 2014-2018. doi: 10.1039/C9TC04107A
    [36]
    LIM J, PARK Y S, WU K F, et al. Droop-free colloidal quantum dot light-emitting diodes[J]. Nano Letters, 2018, 18(10): 6645-6653. doi: 10.1021/acs.nanolett.8b03457
    [37]
    PU CH D, DAI X L, SHU Y F, et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots[J]. Nature Communications, 2020, 11(1): 937. doi: 10.1038/s41467-020-14756-5
    [38]
    ZHANG ZH X, YE Y X, PU CH D, et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots[J]. Advanced Materials, 2018, 30(28): e1801387. doi: 10.1002/adma.201801387
    [39]
    DAVIDSON-HALL T, AZIZ H. Significant enhancement in quantum dot light-emitting device stability via a cascading hole transport layer[J]. ACS Applied Materials &Interfaces, 2020, 12(14): 16782-16791.
    [40]
    JIANG X H, MA Y T, TIAN Y, et al. High-efficiency and stable quantum dot light-emitting diodes with staircase V2O5/PEDOT: PSS hole injection layer interface barrier[J]. Organic Electronics, 2020, 78: 105589. doi: 10.1016/j.orgel.2019.105589
    [41]
    KHAN Q, SUBRAMANIAN A, AHMED I, et al. Overcoming the electroluminescence efficiency limitations in quantum-dot light-emitting diodes[J]. Advanced Optical Materials, 2019, 7(20): 1900695. doi: 10.1002/adom.201900695
    [42]
    SHEN H B, CAO W R, SHEWMON N T, et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes[J]. Nano Letters, 2015, 15(2): 1211-1216. doi: 10.1021/nl504328f
    [43]
    LEE K H, LEE J H, KANG H D, et al. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots[J]. ACS Nano, 2014, 8(5): 4893-4901. doi: 10.1021/nn500852g
    [44]
    LI ZH H, CHEN F, WANG L, et al. Synthesis and evaluation of ideal core/shell quantum dots with precisely controlled shell growth: nonblinking, single photoluminescence decay channel, and suppressed FRET[J]. Chemistry of Materials, 2018, 30(11): 3668-3676. doi: 10.1021/acs.chemmater.8b00183
    [45]
    HAN C Y, YANG H. Development of colloidal quantum dots for electrically driven light-emitting devices[J]. Journal of the Korean Ceramic Society, 2017, 54(6): 449-469. doi: 10.4191/kcers.2017.54.6.03
    [46]
    FU Y, KIM D, JIANG W, et al. Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots[J]. RSC Advances, 2017, 7(65): 40866-40872. doi: 10.1039/C7RA06957J
    [47]
    YANG ZH W, WU Q Q, LIN G L, et al. All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime[J]. Materials Horizons, 2019, 6(10): 2009-2015. doi: 10.1039/C9MH01053J
    [48]
    KIM S, KIM T, KANG M, et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes[J]. Journal of the American Chemical Society, 2012, 134(8): 3804-3809. doi: 10.1021/ja210211z
    [49]
    JUN S, JANG E. Bright and stable alloy core/multishell quantum dots[J]. Angewandte Chemie International Edition, 2013, 52(2): 679-682. doi: 10.1002/anie.201206333
    [50]
    PANDA S K, HICKEY S G, WAURISCH C, et al. Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications[J]. Journal of Materials Chemistry, 2011, 21(31): 11550-11555. doi: 10.1039/c1jm11375e
    [51]
    YANG Y X, ZHENG Y, CAO W R, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nature Photonics, 2015, 9(4): 259-266. doi: 10.1038/nphoton.2015.36
    [52]
    MORRIS-COHEN A J, DONAKOWSKI M D, KNOWLES K E, et al. The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide[J]. The Journal of Physical Chemistry C, 2010, 114(2): 897-906. doi: 10.1021/jp909492w
    [53]
    KIM T, YOON C, SONG Y G, et al. Thermal stabilities of cadmium selenide and cadmium-free quantum dots in quantum dot–silicone nanocomposites[J]. Journal of Luminescence, 2016, 177: 54-58. doi: 10.1016/j.jlumin.2016.04.038
    [54]
    PAN J, SHANG Y Q, YIN J, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. Journal of the American Chemical Society, 2018, 140(2): 562-565. doi: 10.1021/jacs.7b10647
    [55]
    KRIEG F, OCHSENBEIN S T, YAKUNIN S, et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability[J]. ACS Energy Letters, 2018, 3(3): 641-646. doi: 10.1021/acsenergylett.8b00035
    [56]
    SUN Y ZH, SU Q, ZHANG H, et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes[J]. ACS Nano, 2019, 13(10): 11433-11442. doi: 10.1021/acsnano.9b04879
    [57]
    CAO F, WU Q Q, YANG X Y. Efficient and stable inverted quantum dot light-emitting diodes enabled by an inorganic copper-doped tungsten phosphate hole-injection layer[J]. ACS Applied Materials &Interfaces, 2019, 11(43): 40267-40273.
    [58]
    YANG X Y, MUTLUGUN E, ZHAO Y B, et al. Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes[J]. Small, 2014, 10(2): 247-252. doi: 10.1002/smll.201301199
    [59]
    ZHANG H, WANG S T, SUN X W, et al. Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(4): 817-823. doi: 10.1039/C6TC04050K
    [60]
    SUN Y ZH, CHEN W, WU Y H, et al. A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes[J]. Nanoscale, 2019, 11(3): 1021-1028. doi: 10.1039/C8NR08976K
    [61]
    YANG X Y, ZHANG Z H, DING T, et al. High-efficiency all-inorganic full-colour quantum dot light-emitting diodes[J]. Nano Energy, 2018, 46: 229-233. doi: 10.1016/j.nanoen.2018.02.002
    [62]
    JI W Y, LIU S H, ZHANG H, et al. Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes[J]. ACS Photonics, 2017, 4(5): 1271-1278. doi: 10.1021/acsphotonics.7b00216
    [63]
    WANG T, ZHU B Y, WANG S P, et al. Influence of shell thickness on the performance of NiO-based all-inorganic quantum dot light-emitting diodes[J]. ACS Applied Materials &Interfaces, 2018, 10(17): 14894-14900.
    [64]
    ZHANG Y D, WANG SH J, CHEN L, et al. Solution-processed quantum dot light-emitting diodes based on NiO nanocrystals hole injection layer[J]. Organic Electronics, 2017, 44: 189-197. doi: 10.1016/j.orgel.2017.02.023
    [65]
    LIN J, DAI X L, LIANG X Y, et al. High-performance quantum-dot light-emitting diodes using NiOx Hole‐injection layers with a high and stable work function[J]. Advanced Functional Materials, 2020, 30(5): 1907265. doi: 10.1002/adfm.201907265
    [66]
    WANG L X, PAN J Y, QIAN J P, et al. Performance enhancement of all-inorganic quantum dot light-emitting diodes via surface modification of nickel oxide nanoparticles hole transport layer[J]. ACS Applied Electronic Materials, 2019, 1(10): 2096-2102. doi: 10.1021/acsaelm.9b00479
    [67]
    SUN Q J, WANG Y A, LI L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nature Photonics, 2007, 1(12): 717-722. doi: 10.1038/nphoton.2007.226
    [68]
    QIAN L, ZHENG Y, XUE J G, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nature Photonics, 2011, 5(9): 543-548. doi: 10.1038/nphoton.2011.171
    [69]
    KWAK J, BAE W K, LEE D, et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure[J]. Nano Letters, 2012, 12(5): 2362-2366. doi: 10.1021/nl3003254
    [70]
    CHO K S, LEE E K, JOO W J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes[J]. Nature Photonics, 2009, 3(6): 341-345. doi: 10.1038/nphoton.2009.92
    [71]
    KIM H Y, PARK Y J, KIM J, et al. Transparent InP quantum dot light-emitting diodes with ZrO2 electron transport layer and indium zinc oxide top electrode[J]. Advanced Functional Materials, 2016, 26(20): 3454-3461. doi: 10.1002/adfm.201505549
    [72]
    XIONG X Y, WEI CH T, XIE L M, et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface[J]. Organic Electronics, 2019, 73: 247-254. doi: 10.1016/j.orgel.2019.06.016
    [73]
    XIA F T, SUN X W, CHEN SH M. Alternating-current driven quantum-dot light-emitting diodes with high brightness[J]. Nanoscale, 2019, 11(12): 5231-5239. doi: 10.1039/C8NR10461A
    [74]
    WANG F ZH, SUN W D, LIU P, et al. Achieving balanced charge injection of blue quantum dot light-emitting diodes through transport layer doping strategies[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 960-965. doi: 10.1021/acs.jpclett.9b00189
    [75]
    LEE Y, KIM H M, KIM J, et al. Remarkable lifetime improvement of quantum-dot light emitting diodes by incorporating rubidium carbonate in metal-oxide electron transport layers[J]. Journal of Materials Chemistry C, 2019, 7(32): 10082-10091. doi: 10.1039/C9TC02683E
    [76]
    LI ZH H, HU Y X, SHEN H B, et al. Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots[J]. Laser &Photonics Reviews, 2017, 11(1): 1600227.
    [77]
    LIU Y, JIANG C B, SONG CH, et al. Highly efficient all-solution processed inverted quantum dots based light emitting diodes[J]. ACS Nano, 2018, 12(2): 1564-1570. doi: 10.1021/acsnano.7b08129
    [78]
    LAN L H, LIU B CH, TAO H, et al. Preparation of efficient quantum dot light-emitting diodes by balancing charge injection and sensitizing emitting layer with phosphorescent dye[J]. Journal of Materials Chemistry C, 2019, 7(19): 5755-5763. doi: 10.1039/C8TC04991B
    [79]
    ZHENG L L, ZHAI G M, ZHANG Y, et al. Solution-processed blue quantum-dot light-emitting diodes based on double hole transport layers: charge injection balance, solvent erosion control and performance improvement[J]. Superlattices and Microstructures, 2020, 140: 106460. doi: 10.1016/j.spmi.2020.106460
    [80]
    JIANG C B, ZOU J H, LIU Y, et al. Fully solution-processed tandem white quantum-dot light-emitting diode with an external quantum efficiency exceeding 25%[J]. ACS Nano, 2018, 12(6): 6040-6049. doi: 10.1021/acsnano.8b02289
    [81]
    JIANG C B, LIU H M, LIU B Q, et al. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers[J]. Organic Electronics, 2016, 31: 82-89. doi: 10.1016/j.orgel.2016.01.009
    [82]
    PAN J Y, WEI CH T, WANG L X, et al. Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment[J]. Nanoscale, 2018, 10(2): 592-602. doi: 10.1039/C7NR06248F
    [83]
    WANG X J, SHEN P Y, CAO F, et al. Stepwise bi-layer hole-transport interlayers with deep highest occupied molecular orbital level for efficient green quantum dot light-emitting diodes[J]. IEEE Electron Device Letters, 2019, 40(7): 1139-1142. doi: 10.1109/LED.2019.2916584
    [84]
    TANG P Y, XIE L M, XIONG X Y, et al. Realizing 22.3% EQE and 7-fold lifetime enhancement in QLEDs via blending polymer TFB and cross-linkable small molecules for a solvent-resistant hole transport layer[J]. ACS Applied Materials &Interfaces, 2020, 12(11): 13087-13095.
    [85]
    LIU Y Y, LAN L H, LIU B CH, et al. Improved performance of inverted quantum dot light-emitting diodes by blending the small-molecule and polymer materials as hole transport layer[J]. Organic Electronics, 2020, 80: 105618. doi: 10.1016/j.orgel.2020.105618
    [86]
    LIN Q L, WANG L, LI ZH H, et al. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process[J]. ACS Photonics, 2018, 5(3): 939-946. doi: 10.1021/acsphotonics.7b01195
    [87]
    DING K, CHEN H T, FAN L W, et al. Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes[J]. ACS Applied Materials &Interfaces, 2017, 9(23): 20231-20238.
    [88]
    RASTOGI P, PALAZON F, PRATO M, et al. Enhancing the performance of CdSe/CdS dot-in-rod light-emitting diodes via surface ligand modification[J]. ACS Applied Materials &Interfaces, 2018, 10(6): 5665-5672.
    [89]
    JIN H, MOON H, LEE W, et al. Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers[J]. RSC Advances, 2019, 9(21): 11634-11640. doi: 10.1039/C9RA00145J
    [90]
    LI Y F, DAI X L, CHEN D S, et al. Inverted quantum dot light-emitting diodes with conductive interlayers of zirconium acetylacetonate[J]. Journal of Materials Chemistry C, 2019, 7(11): 3154-3159. doi: 10.1039/C8TC06511J
    [91]
    LI Y, HOU X Q, DAI X L, et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence[J]. Journal of the American Chemical Society, 2019, 141(16): 6448-6452. doi: 10.1021/jacs.8b12908
    [92]
    WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature, 2019, 575(7784): 634-638. doi: 10.1038/s41586-019-1771-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views(3141) PDF downloads(337) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return