Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
REN Zhi-hui, ZHONG Mian-zeng, YANG Jue-han, WEI Zhong-ming. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. doi: 10.37188/CO.2020-0189
Citation: REN Zhi-hui, ZHONG Mian-zeng, YANG Jue-han, WEI Zhong-ming. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. doi: 10.37188/CO.2020-0189

A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction

Funds:  National Key Research and Development Program of China (No. 2017YFA0207500); the National Natural Science Foundation of China (No. 62004193); Beijing National Laboratory for Molecular Sciences (No. BNLMS201908)
More Information
  • Corresponding author: zmwei@semi.ac.cn
  • Received Date: 21 Oct 2020
  • Rev Recd Date: 12 Nov 2020
  • Available Online: 19 Dec 2020
  • Publish Date: 25 Jan 2021
  • The ability to detect linearly polarized light is an important index for evaluating polarized photoelectric detectors. Black arsenic phosphorus (b-AsP) is a relatively stable anisotropic material, and is sensitive to linearly polarized light because of its anisotropy inside its planar structure. The material has important application value in polarization detection. This paper introduces a polarization-sensitive photodetector based on AsP/MoS2. Due to the anisotropic light absorption of AsP, effective carrier collection and strong carrier transport capacity of MoS2, as well as the suppression of dark current by a van der Waals heterojunction, the performance of the photodector shows relatively large on/off ratios. Moreover, the photodector has a current optical responsivity of 0.27 A/W and a detectivity of 2×1010 Jones, and more importantly, achieves a dichroic ratio of up to 3.06 at 638 nm. These experimental results show that AsP/MoS2 heterostructures have broad application prospects in the field of polarized photoelectricity detection.

     

  • loading
  • [1]
    LOUIE D C, PHILLIPS J, TCHVIALEVA L, et al. Degree of optical polarization as a tool for detecting melanoma: proof of principle[J]. Journal of Biomedical Optics, 2018, 23(12): 125004.
    [2]
    王新强, 孙晓兵, 张丽娟, 等. 可见/近红外土壤湿度的光谱偏振特性实验研究[J]. 红外与激光工程,2015,44(11):3288-3292. doi: 10.3969/j.issn.1007-2276.2015.11.021

    WANG X Q, SUN X B, ZHANG L J, et al. Experimental study on visible and near-infrared spectrum polarization characteristic of soil moisture[J]. Infrared and Laser Engineering, 2015, 44(11): 3288-3292. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.11.021
    [3]
    BERNAL E O S, SABIN L, LUNA A, et al. The near-infrared polarization of the pre-planetary nebula Frosty Leo[J]. Monthly Notices of the Royal Astronomical Society, 2020, 495(3): 2599-2606.
    [4]
    PICCARDI A, COLACE L. Optical detection of dangerous road conditions[J]. Sensors, 2019, 19(6): 1360.
    [5]
    罗曼, 吴峰, 张莉丽, 等. 二维材料偏振响应光电探测[J]. 南通大学学报(自然科学版),2019,18(3):1-10.

    LUO M, WU F, ZHANG L L, et al. Detection of polarized light using two-dimensional atomic materials[J]. Journal of Nantong University (Natural Science Edition), 2019, 18(3): 1-10. (in Chinese)
    [6]
    TONG L, HUANG X Y, WANG P, et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature[J]. Nature Communications, 2020, 11(1): 2308.
    [7]
    ZHONG M Z, XIA Q L, PAN L F, et al. Thickness-dependent carrier transport characteristics of a New 2D elemental semiconductor: black arsenic[J]. Advanced Functional Materials, 2018, 28(43): 1802581.
    [8]
    ZHONG M Z, ZHOU K, WEI ZH M, et al. Highly anisotropic solar-blind UV photodetector based on large-size two-dimensional α-MoO3 atomic crystals[J]. 2D Materials, 2018, 5(3): 035033.
    [9]
    YAN Y, XIONG W Q, LI SH SH, et al. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection[J]. Advanced Optical Materials, 2019, 7(19): 1900622.
    [10]
    WANG X T, LI Y T, HUANG L, et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide[J]. Journal of the American Chemical Society, 2017, 139(42): 14976-17982.
    [11]
    WANG X T, WU K D, BLEI M, et al. Highly polarized photoelectrical response in vdW ZrS3 nanoribbons[J]. Advanced Electronic Materials, 2019, 5(7): 1900419.
    [12]
    ZHOU Z Q, LONG M SH, PAN L F, et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs[J]. ACS Nano, 2018, 12(12): 12416-12423.
    [13]
    VENUTHURUMILLI P K, YE P D, XU X F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared[J]. ACS Nano, 2018, 12(5): 4861-4867.
    [14]
    ZHOU Q H, CHEN Q, TONG Y L, et al. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection[J]. Angewandte Chemie International Edition, 2016, 55(38): 11437-11441.
    [15]
    ZHANG L, WANG B, ZHOU Y H, et al. Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus[J]. Advanced Optical Materials, 2020, 8(15): 2000045.
    [16]
    LIU B L, KÖPF M, ABBAS A N, et al. Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties[J]. Advanced Materials, 2015, 27(30): 4423-4429.
    [17]
    LONG M SH, GAO A Y, WANG P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Science Advances, 2017, 3(6): 1700589.
    [18]
    WANG X SH, FENG H B, WU Y M, et al. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition[J]. Journal of the American Chemical Society, 2013, 135(14): 5304-5307.
    [19]
    LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7): 1385-1390.
    [20]
    马晶, 张光宇, 戎亦文, 等. 基于半波片的偏振跟踪理论分析[J]. 物理学报,2006,55(1):24-28. doi: 10.3321/j.issn:1000-3290.2006.01.006

    MA J, ZHANG G Y, RONG Y W, et al. Theoretical analysis of polarization tracking based on half-wave plate[J]. Acta Physica Sinica, 2006, 55(1): 24-28. (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.01.006
    [21]
    WU F, LI Q, WANG P, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region[J]. Nature Communications, 2019, 10(1): 4663.
    [22]
    WANG Q SH, XU K, WANG ZH X, et al. van der waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices[J]. Nano Letters, 2015, 15(2): 1183-1189.
    [23]
    ZHAO J L, ZHU J J, CAO R, et al. Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus[J]. Nature Communications, 2019, 10(1): 4062.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(3125) PDF downloads(276) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return