Volume 15 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
JIANG Lin-qi, NING Chun-yu, YU Hai-tao. Classification model based on fusion of multi-scale feature and channel feature for benign and malignant brain tumors[J]. Chinese Optics, 2022, 15(6): 1339-1349. doi: 10.37188/CO.2022-0067
Citation: JIANG Lin-qi, NING Chun-yu, YU Hai-tao. Classification model based on fusion of multi-scale feature and channel feature for benign and malignant brain tumors[J]. Chinese Optics, 2022, 15(6): 1339-1349. doi: 10.37188/CO.2022-0067

Classification model based on fusion of multi-scale feature and channel feature for benign and malignant brain tumors

Funds:  Supported by the Science and Technology Development Project of Jilin Province (No. 20200404219YY)
More Information
  • Corresponding author: yeningcy@163.com
  • Received Date: 12 Apr 2022
  • Rev Recd Date: 03 May 2022
  • Accepted Date: 24 Aug 2022
  • Available Online: 24 Aug 2022
  • Aiming at the problems of complex and inaccurate classification of benign and malignant brain tumors, a classification model was proposed based on the fusion of multi-scale and channel features. The model used ResNeXt as the backbone network. First, the multi-scale feature extraction module based on dilated convolution was used to replace the first convolution layer, which can make full use of dilation rates to obtain the image information from different receptive fields, and combine the global features with significant subtle ones. Second, the channel attention mechanism module was added in the network to fuse the feature channel information in order to increase the attention to the tumor, and reduce the attention to redundant information. Finally, the combination optimization strategy, the MultiStepLR strategy of the learning rate, the label smoothing strategy and the transfer learning strategy on medical images were adopted to improve the learning and generalization abilities of the model. The experiments were carried out on BraTS2017 Dataset and BraTS2019 Dataset, and the classification accuracy were 98.11% and 98.72%, respectively. Compared with other advanced methods and classical models, the proposed classification model can effectively reduce the complexity of the classification process and improve the detection accuracy of benign and malignant brain tumors.

     

  • loading
  • [1]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [2]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Erratum: global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 2020, 70(4): 313.
    [3]
    BAKAS S, AKBARI H, SOTIRAS A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J]. Scientific Data, 2017, 4: 170117. doi: 10.1038/sdata.2017.117
    [4]
    MOHAN G, SUBASHINI M M. MRI based medical image analysis: survey on brain tumor grade classification[J]. Biomedical Signal Processing and Control, 2018, 39: 139-161. doi: 10.1016/j.bspc.2017.07.007
    [5]
    KHARRAT A, HALIMA M B, AYED M B. MRI brain tumor classification using Support Vector Machines and meta-heuristic method[C]. IEEE 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE, 2015: 446-451.
    [6]
    徐立, 白金牛, 李磊民. 基于脑部MR图像GMM特征决策分类的肿瘤诊断[J]. 控制工程,2017,24(8):1718-1722. doi: 10.14107/j.cnki.kzgc.150604

    XU L, BAI J N, LI L M. Diagnosis of tumor in brain MR images based on GMM features and decision tree classifier[J]. Control Engineering of China, 2017, 24(8): 1718-1722. (in Chinese) doi: 10.14107/j.cnki.kzgc.150604
    [7]
    RAJU A R, SURESH P, RAO R R. Bayesian HCS-based multi-SVNN: a classification approach for brain tumor segmentation and classification using Bayesian fuzzy clustering[J]. Biocybernetics and Biomedical Engineering, 2018, 38(3): 646-660. doi: 10.1016/j.bbe.2018.05.001
    [8]
    NARMATHA C, ELJACK S M, TUKA A A R M, et al. . A hybrid fuzzy brain-storm optimization algorithm for the classification of brain tumor MRI images[J]. Journal of Ambient Intelligence and Humanized Computing,doi: 10.1007/s12652-020-02470-5.
    [9]
    黄乐弘, 曹立华, 李宁, 等. 深度学习的空间红外弱小目标状态感知方法[J]. 中国光学,2020,13(3):527-536.

    HUANG L H, CAO L H, LI N, et al. A state perception method for infrared dim and small targets with deep learning[J]. Chinese Optics, 2020, 13(3): 527-536. (in Chinese)
    [10]
    郑江鹏, 余平, 赵萌, 等. 利用低信噪比小样本太赫兹光谱实现心肌淀粉样变检测[J]. 中国光学,2022,15(3):443-453. doi: 10.37188/CO.2021-0223

    ZHENG J P, YU P, ZHAO M, et al. Detection of myocardial amyloidosis by a small number of terahertz spectra with low signal-to-noise ratio[J]. Chinese Optics, 2022, 15(3): 443-453. (in Chinese) doi: 10.37188/CO.2021-0223
    [11]
    吴海滨, 魏喜盈, 王爱丽, 等. 八度卷积和双向门控循环单元结合的X光安检图像分类[J]. 中国光学,2020,13(5):1138-1146. doi: 10.37188/CO.2020-0073

    WU H B, WEI X Y, WANG A L, et al. X-ray security inspection images classification combined octave convolution and bidirectional GRU[J]. Chinese Optics, 2020, 13(5): 1138-1146. (in Chinese) doi: 10.37188/CO.2020-0073
    [12]
    李宇, 刘雪莹, 张洪群, 等. 基于卷积神经网络的光学遥感图像检[J]. 光学 精密工程,2018,26(1):200-207. doi: 10.3788/OPE.20182601.0200

    LI Y, LIU X Y, ZHANG H Q, et al. Optical remote sensing image retrieval based on convolutional neural networks[J]. Optics and Precision Engineering, 2018, 26(1): 200-207. (in Chinese) doi: 10.3788/OPE.20182601.0200
    [13]
    陈筱, 朱向冰, 吴昌凡, 等. 基于迁移学习与特征融合的眼底图像分类[J]. 光学 精密工程,2021,29(2):388-399. doi: 10.37188/OPE.20212902.0388

    CHEN X, ZHU X B, WU CH F, et al. Research on fundus image classification based on transfer learning and feature fusion[J]. Optics and Precision Engineering, 2021, 29(2): 388-399. (in Chinese) doi: 10.37188/OPE.20212902.0388
    [14]
    GNANASEKARAN V S, JOYPAUL S, SUNDARAM P M, et al. Deep learning algorithm for breast masses classification in mammograms[J]. IET Image Processing, 2020, 14(12): 2860-2868. doi: 10.1049/iet-ipr.2020.0070
    [15]
    SHARIF M I, LI J P, KHAN M A, et al. Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images[J]. Pattern Recognition Letters, 2020, 129: 181-189. doi: 10.1016/j.patrec.2019.11.019
    [16]
    KHAN M A, ASHRAF I, ALHAISONI M, et al. Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists[J]. Diagnostics, 2020, 10(8): 565. doi: 10.3390/diagnostics10080565
    [17]
    REHMAN A, KHAN M A, SABA T, et al. Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture[J]. Microscopy Research and Technique, 2021, 84(1): 133-149. doi: 10.1002/jemt.23597
    [18]
    SEETHA J, RAJA S S. Brain tumor classification using Convolutional Neural Networks[J]. Biomedical and Pharmacology Journal, 2018, 11(3): 1457-1461. doi: 10.13005/bpj/1511
    [19]
    赵尚义, 王远军. 基于3D CNN的脑胶质瘤分类算法[J]. 光学技术,2019,45(6):749-755.

    ZHAO SH Y, WANG Y J. Brain glioma classification algorithm based on 3D CNN[J]. Optical Technique, 2019, 45(6): 749-755. (in Chinese)
    [20]
    XIE S N, GIRSHICK R, DOLLÁR P, et al. . Aggregated residual transformations for deep neural networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017: 5987-5995.
    [21]
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. . Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016: 2818-2826.
    [22]
    HE K M, ZHANG X Y, REN SH Q, et al. . Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016: 770-778.
    [23]
    YU F, KOLTUN V.  Multi-scale context aggregation by dilated convolutions[C]. 4th International Conference on Learning Representations, 2016: https://doi.org/10.48550/arXiv.1511.07122.
    [24]
    WOO S, PARK J, LEE J Y, et al. . CBAM: convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 3-19.
    [25]
    JIANG L Q, NING CH Y, LI J Y. Glioma classification framework based on SE-ResNeXt network and its optimization[J]. IET Image Processing, 2022, 16(2): 596-605. doi: 10.1049/ipr2.12374
    [26]
    CHENG J, HUANG W, CAO SH L, et al. Enhanced performance of brain tumor classification via tumor region augmentation and partition[J]. PLoS One, 2015, 10(12): e0140381.
    [27]
    VOVK U, PERNUS F, LIKAR B. A review of methods for correction of intensity inhomogeneity in MRI[J]. IEEE Transactions on Medical Imaging, 2007, 26(3): 405-421. doi: 10.1109/TMI.2006.891486
    [28]
    TUSTISON N J, AVANTS B B, COOK P A, et al. N4ITK: improved N3 bias correction[J]. IEEE Transactions on Medical Imaging, 2010, 29(6): 1310-1320. doi: 10.1109/TMI.2010.2046908
    [29]
    ZHONG ZH, ZHENG L, KANG G L, et al. . Random erasing data augmentation[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI, 2020: 13001-13008.
    [30]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2018: 7132-7141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views(613) PDF downloads(234) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return