Citation: | HUANG Yu-ran, ZHANG Zhi-min, DONG Wan-jie, XU Liang, HAN Yu-bing, HAO Xiang, KUANG Cui-fang, LIU Xu. Multi-color virtual fluorescence emission difference microscopy[J]. Chinese Optics, 2022, 15(6): 1332-1338. doi: 10.37188/CO.2022-0080 |
Fluorescence emission difference microscopy is a super-resolution imaging technique with strong universality of fluorescent dyes and low phototoxicity. However, due to the limitation of its principle, traditional fluorescence emission difference microscopy has a high system complexity, low stability and limited imaging speed. In order to improve these defects, we design and build a set of multi-color virtual fluorescence difference microscopy system, and it’s imaging method and parameter are analyzed. On the basis of the existing principle of multi-color virtual fluorescence emission difference microscopy, the influence of the signal-to-noise ratio and background is further considered, and a virtual fluorescence emission difference microscopy imaging model that can be verified experimentally is established. The experiments show that the system and method have the characteristics of simple structure, strong background denoising ability, strong universality of fluorescent dyes, and low phototoxicity. Its imaging resolution is 1.9 times higher than that of confocal system, and its imaging speed is doubled compared to the traditional fluorescence emission difference microscopy system. It has obtained good imaging results at three wavelengths, and has been experimentally verified in biological cell imaging.
[1] |
ABBE E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv für Mikroskopische Anatomie, 1873, 9(1): 413-468.
|
[2] |
HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780
|
[3] |
KUANG C F, LI SH, LIU W, et al. Breaking the diffraction barrier using fluorescence emission difference microscopy[J]. Scientific Reports, 2013, 3: 1441. doi: 10.1038/srep01441
|
[4] |
BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645. doi: 10.1126/science.1127344
|
[5] |
RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796. doi: 10.1038/nmeth929
|
[6] |
GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87. doi: 10.1046/j.1365-2818.2000.00710.x
|
[7] |
MA Y, KUANG C F, FANG Y, et al. Virtual fluorescence emission difference microscopy based on photon reassignment[J]. Optics Letters, 2015, 40(20): 4627-4630. doi: 10.1364/OL.40.004627
|
[8] |
HE M F, HAN Y B, GAN Y H, et al. Dynamic live-cell super-resolution imaging with parallelized fluorescence emission difference microscopy[J]. Optics Communications, 2020, 460: 125087. doi: 10.1016/j.optcom.2019.125087
|
[9] |
张智敏, 黄宇然, 刘少聪, 等. 共路并行荧光辐射差分超分辨显微成像[J]. 中国激光,2021,48(16):1607002. doi: 10.3788/CJL202148.1607002
ZHANG ZH M, HUANG Y R, LIU SH C, et al. Common-path parallel fluorescence emission difference super-resolution microscopy[J]. Chinese Journal of Lasers, 2021, 48(16): 1607002. (in Chinese) doi: 10.3788/CJL202148.1607002
|
[10] |
LIU SH C, SUN SH Y, KUANG C F, et al. Saturated virtual fluorescence emission difference microscopy based on detector array[J]. Optics Communications, 2017, 395: 45-50. doi: 10.1016/j.optcom.2016.05.024
|
[11] |
MÜLLER C B, ENDERLEIN J. Image scanning microscopy[J]. Physical Review Letters, 2010, 104(19): 198101. doi: 10.1103/PhysRevLett.104.198101
|
[12] |
SHEPPARD C J R, MEHTA S B, HEINTZMANN R. Superresolution by image scanning microscopy using pixel reassignment[J]. Optics Letters, 2013, 38(15): 2889-2892. doi: 10.1364/OL.38.002889
|
[13] |
RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems, Ⅱ. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1959, 253(1274): 358-379.
|
[14] |
LIU X, PENG Y F, TU SH J, et al. Generation of arbitrary longitudinal polarization vortices by pupil function manipulation[J]. Advanced Photonics Research, 2021, 2(1): 2000087. doi: 10.1002/adpr.202000087
|
[15] |
WANG N, KOBAYASHI T. Numerical study of the subtraction threshold for fluorescence difference microscopy[J]. Optics Express, 2014, 22(23): 28819-28830. doi: 10.1364/OE.22.028819
|