| Citation: | LI Meng-fan, CHEN Jian-wei, SHI Wei, FU Shuang, LI Yun-ze, LUO Ting-dan, CHEN Jun-fan, LI Yi-ming. Advances in multi-dimensional single molecule imaging[J]. Chinese Optics, 2022, 15(6): 1243-1257. doi: 10.37188/CO.2022-0088 | 
Single-molecule imaging is widely used for the reconstruction of three-dimensional subcellular structures. The point spread function is an important window to analyze the information of a single molecule. Besides 3D coordinates, it also contains abundant additional information. In this paper, we reviewed the recent progress of multi-dimensional single-molecule imaging, including spatial location, fluorescence wavelength, dipole orientation, interference phase, etc. We also briefly introduced the latest methods for molecule localization and proposed the further directions for its research.
 
	                | [1] | GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87. doi:  10.1046/j.1365-2818.2000.00710.x | 
| [2] | GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086. doi:  10.1073/pnas.0406877102 | 
| [3] | BLOM H, WIDENGREN J. Stimulated emission depletion microscopy[J]. Chemical Reviews, 2017, 117(11): 7377-7427. doi:  10.1021/acs.chemrev.6b00653 | 
| [4] | HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi:  10.1364/OL.19.000780 | 
| [5] | KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8206-8210. doi:  10.1073/pnas.97.15.8206 | 
| [6] | RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796. doi:  10.1038/nmeth929 | 
| [7] | HEILEMANN M, VAN DE LINDE S, SCHÜTTPELZ M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie International Edition, 2008, 47(33): 6172-6176. doi:  10.1002/anie.200802376 | 
| [8] | ZHUANG X W. Nano-imaging with STORM[J]. Nature Photonics, 2009, 3(7): 365-367. doi:  10.1038/nphoton.2009.101 | 
| [9] | BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645. doi:  10.1126/science.1127344 | 
| [10] | SHTENGEL G, GALBRAITH J A, GALBRAITH C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3125-3130. doi:  10.1073/pnas.0813131106 | 
| [11] | SHROFF H, WHITE H, BETZIG E. Photoactivated localization microscopy (PALM) of adhesion complexes[J]. Current Protocols in Cell Biology, 2013, 58(1): 4.21.1-24.21.28. | 
| [12] | LIU Y J, LU Y Q, YANG X S, et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 2017, 543(7644): 229-233. doi:  10.1038/nature21366 | 
| [13] | ZHAN Q Q, LIU H CH, WANG B J, et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles[J]. Nature Communications, 2017, 8(1): 1058. doi:  10.1038/s41467-017-01141-y | 
| [14] | LIANG L L, FENG Z W, ZHANG Q M, et al. Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles[J]. Nature Nanotechnology, 2021, 16(9): 975-980. doi:  10.1038/s41565-021-00927-y | 
| [15] | SCHNITZBAUER J, STRAUSS M T, SCHLICHTHAERLE T, et al. Super-resolution microscopy with DNA-PAINT[J]. Nature Protocols, 2017, 12(6): 1198-1228. doi:  10.1038/nprot.2017.024 | 
| [16] | SCHUEDER F, LARA-GUTIéRREZ J, BELIVEAU B J, et al. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT[J]. Nature Communications, 2017, 8(1): 2090. doi:  10.1038/s41467-017-02028-8 | 
| [17] | JIA H, YANG J K, LI X J. Minimum variance unbiased subpixel centroid estimation of point image limited by photon shot noise[J]. Journal of the Optical Society of America A, 2010, 27(9): 2038-2045. doi:  10.1364/JOSAA.27.002038 | 
| [18] | STALLINGA S, RIEGER B. Accuracy of the gaussian point spread function model in 2D localization microscopy[J]. Optics Express, 2010, 18(24): 24461-24476. doi:  10.1364/OE.18.024461 | 
| [19] | SMALL A, STAHLHEBER S. Fluorophore localization algorithms for super-resolution microscopy[J]. Nature Methods, 2014, 11(3): 267-279. doi:  10.1038/nmeth.2844 | 
| [20] | PATTERSON G, DAVIDSON M, MANLEY S, et al. Superresolution imaging using single-molecule localization[J]. Annual Review of Physical Chemistry, 2010, 61: 345-367. doi:  10.1146/annurev.physchem.012809.103444 | 
| [21] | HERBERT S, SOARES H, ZIMMER C, et al. Single-molecule localization super-resolution microscopy: deeper and faster[J]. Microscopy and Microanalysis, 2012, 18(6): 1419-1429. doi:  10.1017/S1431927612013347 | 
| [22] | HUANG B, WANG W Q, BATES M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813. doi:  10.1126/science.1153529 | 
| [23] | HOLTZER L, MECKEL T, SCHMIDT T. Nanometric three-dimensional tracking of individual quantum dots in cells[J]. Applied Physics Letters, 2007, 90(5): 053902. doi:  10.1063/1.2437066 | 
| [24] | FU SH, LI M F, ZHOU L L, et al. Deformable mirror based optimal PSF engineering for 3D super-resolution imaging[J]. Optics Letters, 2022, 47(12): 3031-3034. doi:  10.1364/OL.460949 | 
| [25] | PIESTUN R, SCHECHNER Y Y, SHAMIR J. Propagation-invariant wave fields with finite energy[J]. Journal of the Optical Society of America A, 2000, 17(2): 294-303. doi:  10.1364/JOSAA.17.000294 | 
| [26] | GREENGARD A, SCHECHNER Y Y, PIESTUN R. Depth from diffracted rotation[J]. Optics Letters, 2006, 31(2): 181-183. doi:  10.1364/OL.31.000181 | 
| [27] | PAVANI S R P, PIESTUN R. High-efficiency rotating point spread functions[J]. Optics Express, 2008, 16(5): 3484-3489. doi:  10.1364/OE.16.003484 | 
| [28] | PAVANI S R P, THOMPSON M A, BITEEN J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 2995-2999. doi:  10.1073/pnas.0900245106 | 
| [29] | BADDELEY D, CANNELL M B, SOELLER C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil[J]. Nano Research, 2011, 4(6): 589-598. doi:  10.1007/s12274-011-0115-z | 
| [30] | LEW M D, LEE S F, BADIEIROSTAMI M, et al. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects[J]. Optics Letters, 2011, 36(2): 202-204. doi:  10.1364/OL.36.000202 | 
| [31] | SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating airy beams[J]. Physical Review Letters, 2007, 99(21): 213901. doi:  10.1103/PhysRevLett.99.213901 | 
| [32] | SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy airy beams[J]. Optics Letters, 2007, 32(8): 979-981. doi:  10.1364/OL.32.000979 | 
| [33] | JIA SH, VAUGHAN J C, ZHUANG X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 2014, 8(4): 302-306. doi:  10.1038/nphoton.2014.13 | 
| [34] | LIU SH, KROMANN E B, KRUEGER W D, et al. Three dimensional single molecule localization using a phase retrieved pupil function[J]. Optics Express, 2013, 21(24): 29462-29487. doi:  10.1364/OE.21.029462 | 
| [35] | ZELGER P, KASER K, ROSSBOTH B, et al. Three-dimensional localization microscopy using deep learning[J]. Optics Express, 2018, 26(25): 33166-33179. doi:  10.1364/OE.26.033166 | 
| [36] | SHECHTMAN Y, SAHL S J, BACKER A S, et al. Optimal point spread function design for 3D imaging[J]. Physical Review Letters, 2014, 113(13): 133902. doi:  10.1103/PhysRevLett.113.133902 | 
| [37] | SHECHTMAN Y, WEISS L E, BACKER A S, et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 2015, 15(6): 4194-4199. doi:  10.1021/acs.nanolett.5b01396 | 
| [38] | GORDON-SOFFER R, WEISS L E, ESHEL R, et al. Microscopic scan-free surface profiling over extended axial ranges by point-spread-function engineering[J]. Science Advances, 2020, 6(44): eabc0332. doi:  10.1126/sciadv.abc0332 | 
| [39] | ZHOU Y ZH, CARLES G. Precise 3D particle localization over large axial ranges using secondary astigmatism[J]. Optics Letters, 2020, 45(8): 2466-2469. doi:  10.1364/OL.388695 | 
| [40] | WEISS L E, SHALEV EZRA Y, GOLDBERG S, et al. Three-dimensional localization microscopy in live flowing cells[J]. Nature Nanotechnology, 2020, 15(6): 500-506. doi:  10.1038/s41565-020-0662-0 | 
| [41] | JIN D Y, XI P, WANG B M, et al. Nanoparticles for super-resolution microscopy and single-molecule tracking[J]. Nature Methods, 2018, 15(6): 415-423. doi:  10.1038/s41592-018-0012-4 | 
| [42] | NEHME E, WEISS L E, MICHAELI T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 2018, 5(4): 458-464. doi:  10.1364/OPTICA.5.000458 | 
| [43] | NEHME E, FREEDMAN D, GORDON R, et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning[J]. Nature Methods, 2020, 17(7): 734-740. doi:  10.1038/s41592-020-0853-5 | 
| [44] | BALZAROTTI F, EILERS Y, GWOSCH K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 2017, 355(6325): 606-612. doi:  10.1126/science.aak9913 | 
| [45] | GWOSCH K C, PAPE J K, BALZAROTTI F, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells[J]. Nature Methods, 2020, 17(2): 217-224. doi:  10.1038/s41592-019-0688-0 | 
| [46] | TESTA I, WURM C A, MEDDA R, et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength[J]. Biophysical Journal, 2010, 99(8): 2686-2694. doi:  10.1016/j.bpj.2010.08.012 | 
| [47] | BROEKEN J, RIEGER B, STALLINGA S. Simultaneous measurement of position and color of single fluorescent emitters using diffractive optics[J]. Optics Letters, 2014, 39(11): 3352-3355. doi:  10.1364/OL.39.003352 | 
| [48] | SMITH C, HUISMAN M, SIEMONS M, et al. Simultaneous measurement of emission color and 3D position of single molecules[J]. Optics Express, 2016, 24(5): 4996-5013. doi:  10.1364/OE.24.004996 | 
| [49] | ZHANG ZH Y, KENNY S J, HAUSER M, et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy[J]. Nature Methods, 2015, 12(10): 935-938. doi:  10.1038/nmeth.3528 | 
| [50] | SHECHTMAN Y, WEISS L E, BACKER A S, et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 2016, 10(9): 590-594. doi:  10.1038/nphoton.2016.137 | 
| [51] | HERSHKO E, WEISS L E, MICHAELI T, et al. Multicolor localization microscopy and point-spread-function engineering by deep learning[J]. Optics Express, 2019, 27(5): 6158-6183. doi:  10.1364/OE.27.006158 | 
| [52] | KIM T, MOON S, XU K. Information-rich localization microscopy through machine learning[J]. Nature Communications, 2019, 10(1): 1996. doi:  10.1038/s41467-019-10036-z | 
| [53] | LEW M D, BACKLUND M P, MOERNER W E. Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy[J]. Nano Letters, 2013, 13(9): 3967-3972. doi:  10.1021/nl304359p | 
| [54] | ENGELHARDT J, KELLER J, HOYER P, et al. Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy[J]. Nano Letters, 2011, 11(1): 209-213. doi:  10.1021/nl103472b | 
| [55] | ZHANGHAO K, CHEN L, YANG X S, et al. Super-resolution dipole orientation mapping via polarization demodulation[J]. Light:Science &Applications, 2016, 5(10): e16166. | 
| [56] | ZHANGHAO K, GAO J T, JIN D Y, et al. Super-resolution fluorescence polarization microscopy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1730002. doi:  10.1142/S1793545817300026 | 
| [57] | ZHANGHAO K, CHEN X Y, LIU W H, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy[J]. Nature Communications, 2019, 10(1): 4694. doi:  10.1038/s41467-019-12681-w | 
| [58] | BACKLUND M P, LEW M D, BACKER A S, et al. Simultaneous, accurate measurement of the 3D position and orientation of single molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19087-19092. doi:  10.1073/pnas.1216687109 | 
| [59] | WILLIG K I, RIZZOLI S O, WESTPHAL V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935-939. doi:  10.1038/nature04592 | 
| [60] | HULLEMAN C N, THORSEN R Ø, KIM E, et al. Simultaneous orientation and 3D localization microscopy with a Vortex point spread function[J]. Nature Communications, 2021, 12(1): 5934. doi:  10.1038/s41467-021-26228-5 | 
| [61] | HELL S, STELZER E H K. Properties of a 4Pi confocal fluorescence microscope[J]. Journal of the Optical Society of America A, 1992, 9(12): 2159-2166. doi:  10.1364/JOSAA.9.002159 | 
| [62] | HAO X, LI Y M, FU SH, et al. Review of 4Pi fluorescence nanoscopy[J]. Engineering, 2022, 11: 146-153. doi:  10.1016/j.eng.2020.07.028 | 
| [63] | AQUINO D, SCHÖNLE A, GEISLER C, et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores[J]. Nature Methods, 2011, 8(4): 353-359. doi:  10.1038/nmeth.1583 | 
| [64] | HUANG F, SIRINAKIS G, ALLGEYER E S, et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 2016, 166(4): 1028-1040. doi:  10.1016/j.cell.2016.06.016 | 
| [65] | LI Y M, BUGLAKOVA E, ZHANG Y D, et al. Accurate 4Pi single-molecule localization using an experimental PSF model[J]. Optics Letters, 2020, 45(13): 3765-3768. doi:  10.1364/OL.397754 | 
| [66] | CHEN J W, YAO B X, YANG ZH CH, et al. Ratiometric 4Pi single-molecule localization with optimal resolution and color assignment[J]. Optics Letters, 2022, 47(2): 325-328. doi:  10.1364/OL.446987 | 
| [67] | ZHANG Y D, SCHROEDER L K, LESSARD M D, et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging[J]. Nature Methods, 2020, 17(2): 225-231. doi:  10.1038/s41592-019-0676-4 | 
| [68] | STETSON P B. DAOPHOT: A computer program for crowded-field stellar photometry[J]. Publications of the Astronomical Society of the Pacific, 1987, 99(613): 191. | 
| [69] | LEUTENEGGER M, RAO R, LEITGEB R A, et al. Fast focus field calculations[J]. Optics Express, 2006, 14(23): 11277-11291. doi:  10.1364/OE.14.011277 | 
| [70] | HANSER B M, GUSTAFSSON M G L, AGARD D A, et al. Phase retrieval for high-numerical-aperture optical systems[J]. Optics Letters, 2003, 28(10): 801-803. doi:  10.1364/OL.28.000801 | 
| [71] | BABCOCK H P, ZHUANG X W. Analyzing single molecule localization microscopy data using cubic splines[J]. Scientific Reports, 2017, 7(1): 552. doi:  10.1038/s41598-017-00622-w | 
| [72] | LI Y M, MUND M, HOESS P, et al. Real-time 3D single-molecule localization using experimental point spread functions[J]. Nature Methods, 2018, 15(5): 367-369. doi:  10.1038/nmeth.4661 | 
| [73] | SPEISER A, MÜLLER L R, HOESS P, et al. Deep learning enables fast and dense single-molecule localization with high accuracy[J]. Nature Methods, 2021, 18(9): 1082-1090. doi:  10.1038/s41592-021-01236-x | 
| [74] | THIELE J C, HELMERICH D A, OLEKSIIEVETS N, et al. Confocal fluorescence-lifetime single-molecule localization microscopy[J]. ACS Nano, 2020, 14(10): 14190-14200. doi:  10.1021/acsnano.0c07322 | 
| [75] | LIN Y, SHARIFI F, ANDERSSON S B. Three-dimensional localization refinement and motion model parameter estimation for confined single particle tracking under low-light conditions[J]. Biomedical Optics Express, 2021, 12(9): 5793-5811. doi:  10.1364/BOE.432187 | 
| [76] | LI Y M, WU Y L, HOESS P, et al. Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization[J]. Biomedical Optics Express, 2019, 10(6): 2708-2718. doi:  10.1364/BOE.10.002708 | 
| [77] | LI Y M, SHI W, LIU SH, et al. Global fitting for high-accuracy multi-channel single-molecule localization[J]. Nature Communications, 2022, 13(1): 3133. doi:  10.1038/s41467-022-30719-4 | 
