Citation: | WANG Yi-qiang, LIN Fang-rui, HU Rui, LIU Li-wei, QU Jun-le. Large field-of-view optical microscopic imaging technology[J]. Chinese Optics, 2022, 15(6): 1194-1210. doi: 10.37188/CO.2022-0098 |
With the characteristics of real-time, high-resolution and non-invasive, optical microscopy can scale from cells, tissues to whole living organisms, which has greatly expanded our understanding to the nature of life. However, due to the limited Space-Bandwidth Product (SBP), it is hard for a conventional optical microscope to achieve a large field of view with a high resolution. This makes it very difficult for microscopic imaging in large field of view biological imaging applications, such as imaging of neural circuits between the synapse of the brain neural networks. Recently, large field-of-view imaging technology has received increasing attention and experienced rapid development. The SBP has been improved ten times or even a hundred times as compared to a traditional optical microscope and the field-of-view has been expanded without sacrificing resolution, which, in turn, has resolved some major problems in biomedical research. This review introduces the progress, characteristics and corresponding biological applications of several typical trans-scale optical imaging techniques in recent years, and gives an outlook on their future development.
[1] |
PARK J, BRADY D J, ZHENG G A, et al. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 2021, 3(4): 044001.
|
[2] |
GUSTAFSSON M G L, AGARD D A, SEDAT J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[J]. Proceedings of SPIE, 2000, 3919: 141-150. doi: 10.1117/12.384189
|
[3] |
GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086. doi: 10.1073/pnas.0406877102
|
[4] |
ZHENG G A, SHEN CH, JIANG SH W, et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 2021, 3(3): 207-223. doi: 10.1038/s42254-021-00280-y
|
[5] |
BIAN Z CH, GUO CH F, JIANG SH W, et al. Autofocusing technologies for whole slide imaging and automated microscopy[J]. Journal of Biophotonics, 2020, 13(12): e202000227.
|
[6] |
TSAI P S, MATEO C, FIELD J J, et al. Ultra-large field-of-view two-photon microscopy[J]. Optics Express, 2015, 23(11): 13833-13847. doi: 10.1364/OE.23.013833
|
[7] |
OLIVAS S J, ARIANPOUR A, STAMENOV I, et al. Image processing for cameras with fiber bundle image relay[J]. Applied Optics, 2015, 54(5): 1124-1137. doi: 10.1364/AO.54.001124
|
[8] |
GREENBAUM A, LUO W, SU T W, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9): 889-895. doi: 10.1038/nmeth.2114
|
[9] |
FARAHANI N, PARWANI A, PANTANOWITZ L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives[J]. Pathology and Laboratory Medicine International, 2015, 2015(7): 23-33.
|
[10] |
BARISONI L, LAFATA K J, HEWITT S M, et al. Digital pathology and computational image analysis in nephropathology[J]. Nature Reviews Nephrology, 2020, 16(11): 669-685. doi: 10.1038/s41581-020-0321-6
|
[11] |
ZHENG G A, OU X Z, YANG C. 0.5 gigapixel microscopy using a flatbed scanner[J]. Biomedical Optics Express, 2014, 5(1): 1-8. doi: 10.1364/BOE.5.000001
|
[12] |
SOFRONIEW N J, FLICKINGER D, KING J, et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging[J]. eLife, 2016, 5: e14472. doi: 10.7554/eLife.14472
|
[13] |
PACHECO S, WANG CH L, CHAWLA M K, et al. High resolution, high speed, long working distance, large field of view confocal fluorescence microscope[J]. Scientific Reports, 2017, 7(1): 13349. doi: 10.1038/s41598-017-13778-2
|
[14] |
FAN J T, SUO J L, WU J M, et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 2019, 13(11): 809-816. doi: 10.1038/s41566-019-0474-7
|
[15] |
WEINSTEIN R S, DESCOUR M R, LIANG CH, et al. An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study[J]. Human Pathology, 2004, 35(11): 1303-1314. doi: 10.1016/j.humpath.2004.09.002
|
[16] |
ORTH A, CROZIER K B. High throughput multichannel fluorescence microscopy with microlens arrays[J]. Optics Express, 2014, 22(15): 18101-18112. doi: 10.1364/OE.22.018101
|
[17] |
SON J, MANDRACCHIA B, JIA SH. Miniaturized modular-array fluorescence microscopy[J]. Biomedical Optics Express, 2020, 11(12): 7221-7235. doi: 10.1364/BOE.410605
|
[18] |
HARDIE R C, BARNARD K J, BOGNAR J G, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system[J]. Optical Engineering, 1998, 37(1): 247-260. doi: 10.1117/1.601623
|
[19] |
COSKUN A F, SENCAN I, SU T W, et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects[J]. Optics Express, 2010, 18(10): 10510-10523. doi: 10.1364/OE.18.010510
|
[20] |
ZHANG Y B, ALEXANDER M, YANG S, et al. High-throughput screening of encapsulated islets using wide-field lens-free on-chip imaging[J]. ACS Photonics, 2018, 5(6): 2081-2086. doi: 10.1021/acsphotonics.8b00343
|
[21] |
JIANG SH W, GUO CH F, SONG P M, et al. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging[J]. ACS Photonics, 2021, 8(11): 3261-3271. doi: 10.1021/acsphotonics.1c01085
|
[22] |
MCCONNELL G, TRÄGÅRDH J, AMOR R, et al. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout[J]. eLife, 2016, 5: e18659. doi: 10.7554/eLife.18659
|
[23] |
JONKMAN J, BROWN C M, WRIGHT G D, et al. Tutorial: guidance for quantitative confocal microscopy[J]. Nature Protocols, 2020, 15(5): 1585-1611. doi: 10.1038/s41596-020-0313-9
|
[24] |
POWER R M, HUISKEN J. A guide to light-sheet fluorescence microscopy for multiscale imaging[J]. Nature Methods, 2017, 14(4): 360-373. doi: 10.1038/nmeth.4224
|
[25] |
SCHNIETE J, FRANSSEN A, DEMPSTER J, et al. Fast optical sectioning for widefield fluorescence mesoscopy with the mesolens based on HiLo microscopy[J]. Scientific Reports, 2018, 8(1): 16259. doi: 10.1038/s41598-018-34516-2
|
[26] |
PERON S P, FREEMAN J, IYER V, et al. A cellular resolution map of barrel cortex activity during tactile behavior[J]. Neuron, 2015, 86(3): 783-799. doi: 10.1016/j.neuron.2015.03.027
|
[27] |
SOFRONIEW N J, VLASOV Y A, HIRES S A, et al. Neural coding in barrel cortex during whisker-guided locomotion[J]. eLife, 2015, 4: 12559. doi: 10.7554/eLife.12559
|
[28] |
JI N, FREEMAN J, SMITH S L. Technologies for imaging neural activity in large volumes[J]. Nature Neuroscience, 2016, 19(9): 1154-1164. doi: 10.1038/nn.4358
|
[29] |
LIN P D, JOHNSON R B. Seidel aberration coefficients: an alternative computational method[J]. Optics Express, 2019, 27(14): 19712-19725. doi: 10.1364/OE.27.019712
|
[30] |
GRAYSON T P. Curved focal plane wide-field-of-view telescope design[J]. Proceedings of SPIE, 2002, 4849: 269-275. doi: 10.1117/12.460757
|
[31] |
KIM M, LEE G J, CHOI C, et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array[J]. Nature Electronics, 2020, 3(9): 546-553. doi: 10.1038/s41928-020-0429-5
|
[32] |
POTSAID B, BELLOUARD Y, WEN J T. Adaptive Scanning Optical Microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging[J]. Optics Express, 2005, 13(17): 6504-6518. doi: 10.1364/OPEX.13.006504
|
[33] |
LECOQ J, SAVALL J, VUČINIĆ D, et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging[J]. Nature Neuroscience, 2014, 17(12): 1825-1829. doi: 10.1038/nn.3867
|
[34] |
BARSON D, HAMODI A S, SHEN X L, et al. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits[J]. Nature Methods, 2020, 17(1): 107-113. doi: 10.1038/s41592-019-0625-2
|
[35] |
WU Y C, HAN X F, SU Y J, et al. Multiview confocal super-resolution microscopy[J]. Nature, 2021, 600(7888): 279-284. doi: 10.1038/s41586-021-04110-0
|
[36] |
WAGNER M J, KIM T H, KADMON J, et al. Shared cortex-cerebellum dynamics in the execution and learning of a motor task[J]. Cell, 2019, 177(3): 669-682.e24. doi: 10.1016/j.cell.2019.02.019
|
[37] |
KOROMPILI G, KANAKARIS G, AMPATIS C, et al. A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens[J]. Sensors and Actuators A:Physical, 2018, 279: 367-375. doi: 10.1016/j.sna.2018.06.034
|
[38] |
MCCALL B, PIERCE M, GRAVISS E A, et al. . Toward a low-cost compact array microscopy platform for detection of tuberculosis[J]. Tuberculosis, 2011, 91 Suppl 1: S54-S60.
|
[39] |
ORTH A, CROZIER K. Gigapixel fluorescence microscopy with a water immersion microlens array[J]. Optics Express, 2013, 21(2): 2361-2368. doi: 10.1364/OE.21.002361
|
[40] |
ORTH A, TOMASZEWSKI M J, GHOSH R N, et al. Gigapixel multispectral microscopy[J]. Optica, 2015, 2(7): 654-662. doi: 10.1364/OPTICA.2.000654
|
[41] |
CUI X Q, LEE L M, HENG X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31): 10670-10675. doi: 10.1073/pnas.0804612105
|
[42] |
LEE L M, CUI X Q, YANG C H. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts[J]. Biomedical Microdevices, 2009, 11(5): 951-958. doi: 10.1007/s10544-009-9312-x
|
[43] |
LEE S A, OU X Z, LEE J E, et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor[J]. Optics Letters, 2013, 38(11): 1817-1819. doi: 10.1364/OL.38.001817
|
[44] |
SASAGAWA K, OHTA Y, KAWAHARA M, et al. Wide field-of-view lensless fluorescence imaging device with hybrid bandpass emission filter[J]. AIP Advances, 2019, 9(3): 035108. doi: 10.1063/1.5083152
|
[45] |
GUO CH, ZHANG F L, ZHANG X Q, et al. Lensfree super-resolved imaging based on adaptive Wiener filter and guided phase retrieval algorithm[J]. Journal of Optics, 2020, 22(5): 055703. doi: 10.1088/2040-8986/ab8287
|
[46] |
JIANG SH W, BIAN Z CH, ZHU J K, et al. High-throughput and field-portable ptychographic lensless on-chip microscopy based on translated pattern modulation[J]. Proceedings of SPIE, 2020, 11250: 112500E.
|
[47] |
OZCAN A, MCLEOD E. Lensless imaging and sensing[J]. Annual Review of Biomedical Engineering, 2016, 18: 77-102. doi: 10.1146/annurev-bioeng-092515-010849
|
[48] |
HAN CH, PANG SH, BOWER D V, et al. Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator[J]. Analytical Chemistry, 2013, 85(4): 2356-2360. doi: 10.1021/ac303356v
|
[49] |
FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust multiframe super resolution[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344. doi: 10.1109/TIP.2004.834669
|
[50] |
GREENBAUM A, LUO W, KHADEMHOSSEINIEH B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3(1): 1717. doi: 10.1038/srep01717
|
[51] |
WU X J, SUN J S, ZHANG J L, et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J]. Optics Letters, 2021, 46(9): 2023-2026. doi: 10.1364/OL.421869
|
[52] |
ELAD M, HEL-OR Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1187-1193. doi: 10.1109/83.935034
|
[53] |
JIANG SH W, GUO CH F, HU P, et al. High-throughput lensless whole slide imaging via continuous height-varying modulation of a tilted sensor[J]. Optics Letters, 2021, 46(20): 5212-5215. doi: 10.1364/OL.437832
|
[54] |
VAN PUTTEN E G, AKBULUT D, BERTOLOTTI J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19): 193905. doi: 10.1103/PhysRevLett.106.193905
|
[55] |
CHOI Y, YOON C, KIM M, et al. Optical imaging with the use of a scattering lens[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 6800213.
|
[56] |
PARK J H, PARK C, YU H, et al. Subwavelength light focusing using random nanoparticles[J]. Nature Photonics, 2013, 7(6): 454-458. doi: 10.1038/nphoton.2013.95
|
[57] |
LI ZH, TAPHANEL M, LÄNGLE T, et al. Confocal fluorescence microscopy with high-NA diffractive lens arrays[J]. Applied Optics, 2022, 61(3): A37-A42. doi: 10.1364/AO.442084
|
[58] |
WANG R K K. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues[J]. Physics in Medicine &Biology, 2002, 47(13): 2281-2299.
|
[59] |
WANG J, ZHANG Y, XU T H, et al. An innovative transparent cranial window based on skull optical clearing[J]. Laser Physics Letters, 2012, 9(6): 469-473. doi: 10.7452/lapl.201210017
|
[60] |
CUNHA R, LAFETA L, FONSECA E A, et al. Multimodal microscopy for characterization of amyloid-β plaques biomarkers in animal model of Alzheimer's disease[J]. Analyst, 2021, 146(10): 2945-2954.
|
[61] |
JIANG L W, WANG X F, WU Z Y, et al. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy[J]. Laser Physics Letters, 2017, 14(10): 105401. doi: 10.1088/1612-202X/aa7c9a
|
[62] |
TARANDA J, TURCAN S. 3D whole-brain imaging approaches to study brain tumors[J]. Cancers, 2021, 13(8): 1897. doi: 10.3390/cancers13081897
|
[63] |
CALOVI S, SORIA F N, TØNNESEN J. Super-resolution STED microscopy in live brain tissue[J]. Neurobiology of Disease, 2021, 156: 105420. doi: 10.1016/j.nbd.2021.105420
|
[64] |
LI A N, GONG H, ZHANG B, et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain[J]. Science, 2010, 330(6009): 1404-1408. doi: 10.1126/science.1191776
|
[65] |
RAGAN T, KADIRI L R, VENKATARAJU K U, et al. Serial two-photon tomography for automated ex vivo mouse brain imaging[J]. Nature Methods, 2012, 9(3): 255-258. doi: 10.1038/nmeth.1854
|
[66] |
TSAI P S, FRIEDMAN B, IFARRAGUERRI A I, et al. All-optical histology using ultrashort laser pulses[J]. Neuron, 2003, 39(1): 27-41. doi: 10.1016/S0896-6273(03)00370-2
|
[67] |
LIN H H, LAI J S Y, CHIN A L, et al. A map of olfactory representation in the Drosophila mushroom body[J]. Cell, 2007, 128(6): 1205-1217. doi: 10.1016/j.cell.2007.03.006
|
[68] |
ZHU D, LARIN K V, LUO Q M, et al. Recent progress in tissue optical clearing[J]. Laser &Photonics Reviews, 2013, 7(5): 732-757.
|
[69] |
UEDA H R, ERTÜRK A, CHUNG K, et al. Tissue clearing and its applications in neuroscience[J]. Nature Reviews Neuroscience, 2020, 21(2): 61-79. doi: 10.1038/s41583-019-0250-1
|
[70] |
HAMA H, KUROKAWA H, KAWANO H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain[J]. Nature Neuroscience, 2011, 14(11): 1481-1488. doi: 10.1038/nn.2928
|
[71] |
ERTÜRK A, MAUCH C P, HELLAL F, et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury[J]. Nature Medicine, 2012, 18(1): 166-171. doi: 10.1038/nm.2600
|
[72] |
ZHU D, WANG J, ZHI ZH W, et al. Imaging dermal blood flow through the intact rat skin with an optical clearing method[J]. Journal of Biomedical Optics, 2010, 15(2): 026008. doi: 10.1117/1.3369739
|
[73] |
ZHONG H Q, GUO ZH Y, WEI H J, et al. In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography[J]. Journal of Biomedical Optics, 2010, 15(3): 036012. doi: 10.1117/1.3432750
|
[74] |
XIA F, GEVERS M, FOGNINI A, et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector[J]. ACS Photonics, 2021, 8(9): 2800-2810. doi: 10.1021/acsphotonics.1c01018
|
[75] |
RYU J, KANG U, KIM J, et al. Real-time visualization of two-photon fluorescence lifetime imaging microscopy using a wavelength-tunable femtosecond pulsed laser[J]. Biomedical Optics Express, 2018, 9(7): 3449-3463. doi: 10.1364/BOE.9.003449
|
[76] |
CHENG H, TONG SH, DENG X Q, et al. Deep-brain 2-photon fluorescence microscopy in vivo excited at the 1700 nm window[J]. Optics Letters, 2019, 44(17): 4432-4435. doi: 10.1364/OL.44.004432
|
[77] |
CHENG H, TONG SH, DENG X Q, et al. In vivo deep-brain imaging of microglia enabled by three-photon fluorescence microscopy[J]. Optics Letters, 2020, 45(18): 5271-5274. doi: 10.1364/OL.408329
|
[78] |
LIU M X, GU B B, WU W B, et al. Binary organic nanoparticles with bright aggregation-induced emission for three-photon brain vascular imaging[J]. Chemistry of Materials, 2020, 32(15): 6437-6443. doi: 10.1021/acs.chemmater.0c01577
|
[79] |
LIU W, ZHANG Y H, QI J, et al. NIR-II excitation and NIR-I emission based two-photon fluorescence lifetime microscopic imaging using aggregation-induced emission dots[J]. Chemical Research in Chinese Universities, 2021, 37(1): 171-176. doi: 10.1007/s40242-021-0405-2
|
[80] |
MAYERICH D, ABBOTT L, MCCORMICK B. Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain[J]. Journal of Microscopy, 2008, 231(1): 134-143. doi: 10.1111/j.1365-2818.2008.02024.x
|
[81] |
SANCATALDO G, GAVRYUSEV V, DE VITO G, et al. Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts[J]. Frontiers in Neuroanatomy, 2019, 13: 7. doi: 10.3389/fnana.2019.00007
|
[82] |
WANG F F, WAN H, MA ZH R, et al. Light-sheet microscopy in the near-infrared II window[J]. Nature Methods, 2019, 16(6): 545-552. doi: 10.1038/s41592-019-0398-7
|
[83] |
GELMAN H, GRUEBELE M. Fast protein folding kinetics[J]. Quarterly Reviews of Biophysics, 2014, 47(2): 95-142. doi: 10.1017/S003358351400002X
|
[84] |
COPOS C, BANNISH B, GASIOR K, et al. . Connecting actin polymer dynamics across multiple scales[M]//SEGAL R, SHTYLLA B, SINDI S. Using Mathematics to Understand Biological Complexity: From Cells to Populations. Cham: Springer, 2021: 7-33.
|
[85] |
LIU T L, UPADHYAYULA S, MILKIE D E, et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms[J]. Science, 2018, 360(6386): eaaq1392. doi: 10.1126/science.aaq1392
|
[86] |
LI T CH, FU T M, WONG K K L, et al. Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging[J]. Cell, 2021, 184(20): 5107-5121.e14. doi: 10.1016/j.cell.2021.08.030
|
[87] |
HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780
|
[88] |
RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796. doi: 10.1038/nmeth929
|
[89] |
BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645. doi: 10.1126/science.1127344
|
[90] |
GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Short communication[J]. Journal of Microscopy, 2000, 198(2): 82-87. doi: 10.1046/j.1365-2818.2000.00710.x
|
[91] |
DIEKMANN R, HELLE Ø I, ØIE C I, et al. Chip-based wide field-of-view nanoscopy[J]. Nature Photonics, 2017, 11(5): 322-328. doi: 10.1038/nphoton.2017.55
|
[92] |
ARCHETTI A, GLUSHKOV E, SIEBEN C, et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging[J]. Nature Communications, 2019, 10(1): 1267. doi: 10.1038/s41467-019-09247-1
|
[93] |
HELLE Ø I, COUCHERON D A, TINGUELY J C, et al. Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale[J]. Optics Express, 2019, 27(5): 6700-6710. doi: 10.1364/OE.27.006700
|
[94] |
CHEN B CH, LEGANT W R, WANG K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution[J]. Science, 2014, 346(6208): 1257998. doi: 10.1126/science.1257998
|
[95] |
GAO R X, ASANO S M, UPADHYAYULA S, et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution[J]. Science, 2019, 363(6424): eaau8302. doi: 10.1126/science.aau8302
|
[96] |
ZHAO Z Y, XIN B, LI L CH, et al. High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view[J]. Optics Express, 2017, 25(12): 13382-13395. doi: 10.1364/OE.25.013382
|
[97] |
MAHECIC D, GAMBAROTTO D, DOUGLASS K M, et al. Homogeneous multifocal excitation for high-throughput super-resolution imaging[J]. Nature Methods, 2020, 17(7): 726-733. doi: 10.1038/s41592-020-0859-z
|
[98] |
MAU A, FRIEDL K, LETERRIER C, et al. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields[J]. Nature Communications, 2021, 12(1): 3077. doi: 10.1038/s41467-021-23405-4
|
[99] |
CHMYROV A, LEUTENEGGER M, GROTJOHANN T, et al. Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy[J]. Scientific Reports, 2017, 7: 44619. doi: 10.1038/srep44619
|
[100] |
CHEN F, TILLBERG P W, BOYDEN E S. Expansion microscopy[J]. Science, 2015, 347(6221): 543-548. doi: 10.1126/science.1260088
|
[101] |
TILLBERG P W, CHEN F, PIATKEVICH K D, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies[J]. Nature Biotechnology, 2016, 34(9): 987-992. doi: 10.1038/nbt.3625
|
[102] |
FREIFELD L, ODSTRCIL I, FÖRSTER D, et al. Expansion microscopy of zebrafish for neuroscience and developmental biology studies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): E10799-E10808.
|
[103] |
GUO F, HOLLA M, DÍAZ M M, et al. A circadian output circuit controls sleep-wake arousal in Drosophila[J]. Neuron, 2018, 100(3): 624-635.e4. doi: 10.1016/j.neuron.2018.09.002
|
[104] |
JIN T, GUO H, YAO L, et al. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms[J]. Journal of Biophotonics, 2018, 11(4): e201700250. doi: 10.1002/jbio.201700250
|
[105] |
QIN W, JIN T, GUO H, et al. Large-field-of-view optical resolution photoacoustic microscopy[J]. Optics Express, 2018, 26(4): 4271-4278. doi: 10.1364/OE.26.004271
|
[106] |
MCNABB R P, POLANS J, KELLER B, et al. Wide-field whole eye OCT system with demonstration of quantitative retinal curvature estimation[J]. Biomedical Optics Express, 2019, 10(1): 338-355. doi: 10.1364/BOE.10.000338
|
[107] |
RECHER G, NASSOY P, BADON A. Remote scanning for ultra-large field of view in wide-field microscopy and full-field OCT[J]. Biomedical Optics Express, 2020, 11(5): 2578-2590. doi: 10.1364/BOE.383329
|
[108] |
RON A, KALVA S K, PERIYASAMY V, et al. Flash scanning volumetric optoacoustic tomography for high resolution whole-body tracking of nanoagent kinetics and biodistribution[J]. Laser &Photonics Reviews, 2021, 15(3): 2000484.
|