Volume 16 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
ZHANG Rui, XU Cheng-yu, WANG Zhi-bin, TANG Wei-ping, XUE Peng, LI Meng-wei. Imaging and detection method for static interferometric high-temperature temperature field[J]. Chinese Optics, 2023, 16(4): 796-801. doi: 10.37188/CO.2022-0168
Citation: ZHANG Rui, XU Cheng-yu, WANG Zhi-bin, TANG Wei-ping, XUE Peng, LI Meng-wei. Imaging and detection method for static interferometric high-temperature temperature field[J]. Chinese Optics, 2023, 16(4): 796-801. doi: 10.37188/CO.2022-0168

Imaging and detection method for static interferometric high-temperature temperature field

Funds:  Supported by National Natural Science Foundation of China (No. 62105302)
More Information
  • Corresponding author: zhangrui@nuc.edu.cn
  • Received Date: 22 Jul 2022
  • Rev Recd Date: 24 Aug 2022
  • Available Online: 06 Feb 2023
  • In order to realize the non-contact high-precision measurement of high-temperature temperature fields such as the tail flame, combustion and explosion of aerospace engines, a static interferometric high-temperature temperature field imaging and detection method is studied. Firstly, a static interference high-temperature temperature field detection system is designed. On the basis of theoretical analysis of the measurement principle of high-temperature temperature fields, the relationship between the optical path difference and the temperature at the lowest point of high-temperature interference signal intensity is studied. Secondly, according to the response band of the visible light area array detector and the common temperature range, a static interferometric Savart prism is designed, and temperature field imaging is realized by using it for one-dimensional scanning. Finally, the optical system is designed and the corresponding relationship between the minimum optical path difference of the interference and the temperature is obtained by fitting. From this, the linear fitting formula is obtained. Simulations are conducted to verify the interference signal image where the temperature field after passing through the system reaches the area detector. The static interferometric high-temperature temperature field detection method can achieve the high-precision detection of 1000 K−3000 K temperatures. In the linear region, the temperature measurement resolution is 1.4 K and the temperature measurement relative error is better than 0.8%. This research lays the foundation for high-precision high-temperature temperature field imaging in the military and civilian fields.

     

  • loading
  • [1]
    刘晶儒, 胡志云. 基于激光的测量技术在燃烧流场诊断中的应用[J]. 中国光学,2018,11(4):531-549. doi: 10.3788/co.20181104.0531

    LIU J R, HU ZH Y. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 2018, 11(4): 531-549. (in Chinese) doi: 10.3788/co.20181104.0531
    [2]
    HAN J C. Fundamental gas turbine heat transfer[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021007. doi: 10.1115/1.4023826
    [3]
    MODEST M F, HAWORTH D C. Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications[M]. New York: Springer, 2016.
    [4]
    POLIFKE W. Modeling and analysis of premixed flame dynamics by means of distributed time delays[J]. Progress in Energy and Combustion Science, 2020, 79: 100845. doi: 10.1016/j.pecs.2020.100845
    [5]
    李昂, 王秋林, 张晓林, 等. 民用飞机研制的高温测量应用分析[J]. 成都航空职业技术学院学报,2021,37(1):35-38. doi: 10.3969/j.issn.1671-4024.2021.01.012

    LI A, WANG Q L, ZHANG X L, et al. Application analysis of pyrometry in civil aircraft manufacturing[J]. Journal of Chengdu Aeronautic Polytechnic, 2021, 37(1): 35-38. (in Chinese) doi: 10.3969/j.issn.1671-4024.2021.01.012
    [6]
    贺宗琴. 表面温度测量[M]. 北京: 中国计量出版社, 2009.

    HE Z Q. Surface Temperature Measurement[M]. Beijing: China Metrology Press, 2009. (in Chinese)
    [7]
    MEKHRENGIN M V, MESHKOVSKII I K, TASHKINOV V A, et al. Multispectral pyrometer for high temperature measurements inside combustion chamber of gas turbine engines[J]. Measurement, 2019, 139: 355-360. doi: 10.1016/j.measurement.2019.02.084
    [8]
    李伟. 热电偶测温误差的来源与处理[C]. 第十八届中国航空测控技术年会论文集, 《测控技术》杂志社, 2021: 256-259.

    LI W. Sources and treatment of thermocouple temperature measurement error[C]. Proceedings of the 18th China Annual Conference on Aerial Measurement and Control Technology, Measurement and Control Technology Magazine, 2021: 256-259.
    [9]
    VON MOLL A, BEHBAHANI A R, FRALICK G C, et al. . A review of exhaust gas temperature sensing techniques for modern turbine engine controls[C]. Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA, 2014: 3977.
    [10]
    NI M J, ZHANG H D, WANG F, et al. Study on the detection of three-dimensional soot temperature and volume fraction fields of a laminar flame by multispectral imaging system[J]. Applied Thermal Engineering, 2016, 96: 421-431. doi: 10.1016/j.applthermaleng.2015.11.116
    [11]
    郑翔远, 叶新, 罗志涛, 等. 高精度辐射热流计的不确定度分析与评价[J]. 中国光学(中英文),2022,15(4):780-788. doi: 10.37188/CO.2022-0023

    ZHENG X Y, YE X, LUO ZH T, et al. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022, 15(4): 780-788. (in Chinese) doi: 10.37188/CO.2022-0023
    [12]
    蔡红星, 胡馨月, 李昌立, 等. 强激光毁伤过程的热辐射谱测量[J]. 中国光学,2012,5(3):277-282.

    CAI H X, HU X Y, LI CH L, et al. Thermal radiation spectral measurement of intense laser damage[J]. Chinese Optics, 2012, 5(3): 277-282. (in Chinese)
    [13]
    MODEST M F, MAZUMDER S. Radiative Heat Transfer[M]. 4th ed. Amsterdam: Academic Press, 2021.
    [14]
    吕金光, 梁静秋, 赵百轩, 等. 全景双谱段红外成像干涉光谱测量反演仪器[J]. 中国光学(中英文),2022,15(5):1092-1104. doi: 10.37188/CO.2022-0114

    LV J G, LIANG J Q, ZHAO B X, et al. Panoramic bispectral infrared imaging interference spectrum measurement inversion instrument[J]. Chinese Optics, 2022, 15(5): 1092-1104. (in Chinese) doi: 10.37188/CO.2022-0114
    [15]
    刘东, 姚清睿, 张思诺, 等. 拉曼激光雷达大气温湿压探测技术研究进展[J]. 中国光学(中英文), doi: 10.37188/CO.2022-0145.

    LIU D, YAO Q R, ZHANG S N, et al.. Research progress of raman lidar temperature and humidity pressure detection technology[J]. Chinese Optics, doi: 10.37188/CO.2022-0145. (in Chinese)
    [16]
    莫苏新. 基于CCD的高温温度场测量方法研究[D]. 长春: 长春理工大学, 2020.

    MO S X. Research on high temperature field measurement method based on CCD[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(866) PDF downloads(223) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return