Citation: | YANG Zhi-hu, FU Jia-hui, ZHANG Yu-ping, ZHANG Hui-yun. Fano resonances design of metamaterials based on deep learning[J]. Chinese Optics, 2023, 16(4): 816-823. doi: 10.37188/CO.2022-0208 |
In this paper, a metamaterial Fano resonance design method based on deep learning is proposed to obtain high-quality factor (high-Q) resonances with desired characteristics, such as linewidth, amplitude, and spectral position.The deep neural network is used to establish the mapping between the structural parameters and the transmission spectrum curve. In the design, the forward network is used to predict the transmission spectrum, and the inverse network is used to achieve the on-demand design of high Q resonance. The low mean square error ( MSE ) is achieved in the design process, and the mean square error of the training set is 0.007. The results indicate that compared with the traditional design process, using deep learning to guide the design can achieve faster, more accurate, and more convenient purposes. The design of Fano resonance can also be extended to the automatic inverse design of other types of metamaterials, significantly improving the feasibility of more complex metamaterial designs.
[1] |
FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866-1878. doi: 10.1103/PhysRev.124.1866
|
[2] |
FEDOTOV V A, ROSE M, PROSVIRNIN S L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007, 99(14): 147401. doi: 10.1103/PhysRevLett.99.147401
|
[3] |
HAO F, SONNEFRAUD Y, VAN DORPE P, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 2008, 8(11): 3983-3988. doi: 10.1021/nl802509r
|
[4] |
RAHMANI M, LUK'YANCHUK B, HONG M H. Fano resonance in novel plasmonic nanostructures[J]. Laser &Photonics Reviews, 2013, 7(3): 329-349.
|
[5] |
KUZNETSOV A I, MIROSHNICHENKO A E, BRONGERSMA M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): eaag2472. doi: 10.1126/science.aag2472
|
[6] |
CHEN J J, GAN F Y, WANG Y J, et al. Plasmonic sensing and modulation based on Fano resonances[J]. Advanced Optical Materials, 2018, 6(9): 1701152. doi: 10.1002/adom.201701152
|
[7] |
LIMONOV M F. Fano resonance for applications[J]. Advances in Optics and Photonics, 2021, 13(3): 703-771. doi: 10.1364/AOP.420731
|
[8] |
付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi: 10.37188/CO.2021-0017
FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
|
[9] |
林婧, 李琦, 邱孟, 等. 人工原子间耦合: 超构表面调控电磁波的新自由度[J]. 中国光学,2021,14(4):717-735. doi: 10.37188/CO.2021-0030
LIN J, LI Q, QIU M, et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. (in Chinese) doi: 10.37188/CO.2021-0030
|
[10] |
王锋, 刘星辰, 王政平, 等. 基于手性超材料的太赫兹波非对称传输的研究[J]. 哈尔滨工程大学学报,2015,36(12):1638-1641. doi: 10.11990/jheu.201501046
WANG F, LIU X CH, WANG ZH P, et al. A study of asymmetric transmission of terahertz waves based on chiral metamaterials[J]. Journal of Harbin Engineering University, 2015, 36(12): 1638-1641. (in Chinese) doi: 10.11990/jheu.201501046
|
[11] |
MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 2010, 82(3): 2257-2298. doi: 10.1103/RevModPhys.82.2257
|
[12] |
LIU SH D, YANG ZH, LIU R P, et al. High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity[J]. The Journal of Physical Chemistry C, 2011, 115(50): 24469-24477. doi: 10.1021/jp209754m
|
[13] |
CHANG W SH, LASSITER J B, SWANGLAP P, et al. A plasmonic Fano switch[J]. Nano Letters, 2012, 12(9): 4977-4982. doi: 10.1021/nl302610v
|
[14] |
PIAO X J, YU S, PARK N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator[J]. Optics Express, 2012, 20(17): 18994-18999. doi: 10.1364/OE.20.018994
|
[15] |
WU C, KHANIKAEV A B, SHVETS G. Broadband slow light metamaterial based on a double-continuum Fano resonance[J]. Physical Review Letters, 2011, 106(10): 107403. doi: 10.1103/PhysRevLett.106.107403
|
[16] |
JAFAR-ZANJANI S, INAMPUDI S, MOSALLAEI H. Adaptive genetic algorithm for optical metasurfaces design[J]. Scientific Reports, 2018, 8(1): 11040. doi: 10.1038/s41598-018-29275-z
|
[17] |
PHAN T, SELL D, WANG E W, et al. High-efficiency, large-area, topology-optimized metasurfaces[J]. Light:Science &Applications, 2019, 8(1): 48.
|
[18] |
RONG J J, YE W J. Multifunctional elastic metasurface design with topology optimization[J]. Acta Materialia, 2020, 185: 382-399. doi: 10.1016/j.actamat.2019.12.017
|
[19] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
|
[20] |
刘硕, 张霜, 崔铁军. 拓扑电路——新奇拓扑物理现象的研究平台[J]. 中国光学,2021,14(4):736-753. doi: 10.37188/CO.2021-0095
LIU SH, ZHANG SH, CUI T J. Topological circuit: a playground for exotic topological physics[J]. Chinese Optics, 2021, 14(4): 736-753. (in Chinese) doi: 10.37188/CO.2021-0095
|
[21] |
苏照贤, 姚恩旭, 黄玲玲, 等. 二维人工超材料的光学拓扑性质[J]. 中国光学,2021,14(4):955-967. doi: 10.37188/CO.2021-0074
SU ZH X, YAO E X, HUANG L L, et al. Optical topological characteristics of two dimensional artificial metamaterials[J]. Chinese Optics, 2021, 14(4): 955-967. (in Chinese) doi: 10.37188/CO.2021-0074
|
[22] |
LI H, OTA K, DONG M X. Learning IoT in edge: deep learning for the internet of things with edge computing[J]. IEEE Network, 2018, 32(1): 96-101. doi: 10.1109/MNET.2018.1700202
|
[23] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489. doi: 10.1038/nature16961
|
[24] |
NASSIF A B, SHAHIN I, ATTILI I, et al. Speech recognition using deep neural networks: a systematic review[J]. IEEE Access, 2019, 7: 19143-19165. doi: 10.1109/ACCESS.2019.2896880
|
[25] |
NODA K, ARIE H, SUGA Y, et al. Multimodal integration learning of robot behavior using deep neural networks[J]. Robotics and Autonomous Systems, 2014, 62(6): 721-736. doi: 10.1016/j.robot.2014.03.003
|
[26] |
MA W, CHENG F, LIU Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326-6334. doi: 10.1021/acsnano.8b03569
|
[27] |
NADELL C C, HUANG B H, MALOF J M, et al. Deep learning for accelerated all-dielectric metasurface design[J]. Optics Express, 2019, 27(20): 27523-27535. doi: 10.1364/OE.27.027523
|
[28] |
XU L, RAHMANI M, MA Y X, et al. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach[J]. Advanced Photonics, 2020, 2(2): 026003.
|
[29] |
HOU ZH Y, ZHANG P Y, GE M F, et al. Metamaterial reverse multiple prediction method based on deep learning[J]. Nanomaterials, 2021, 11(10): 2672. doi: 10.3390/nano11102672
|
[30] |
ZHOU X SH, XIAO Q D, WANG H. Metamaterials design method based on deep learning database[J]. Journal of Physics:Conference Series, 2022, 2185: 012023. doi: 10.1088/1742-6596/2185/1/012023
|
[31] |
KHATIB O, REN S M, MALOF J, et al. Deep learning the electromagnetic properties of metamaterials—a comprehensive review[J]. Advanced Functional Materials, 2021, 31(31): 2101748. doi: 10.1002/adfm.202101748
|
[32] |
TAN T C W, PLUM E, SINGH R. Lattice-enhanced Fano resonances from bound states in the continuum metasurfaces[J]. Advanced Optical Materials, 2020, 8(6): 1901572. doi: 10.1002/adom.201901572
|