Volume 16 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
TAO Shan-jing, ZHEN Sheng-lai, FANG Jian, CHEN Xin, LV Tao, YU Ben-Li. Laser Doppler velocimetry with a dual polarization structure[J]. Chinese Optics, 2023, 16(4): 753-764. doi: 10.37188/CO.2022-0211
Citation: TAO Shan-jing, ZHEN Sheng-lai, FANG Jian, CHEN Xin, LV Tao, YU Ben-Li. Laser Doppler velocimetry with a dual polarization structure[J]. Chinese Optics, 2023, 16(4): 753-764. doi: 10.37188/CO.2022-0211

Laser Doppler velocimetry with a dual polarization structure

Funds:  Supported by Key Research and Development Plan of Anhui Province (No. 202104a05020059); Excellent Scientific Research and Innovation Team of Anhui Province (No. 2022AH010003)
More Information
  • Corresponding author: slzhen@ahu.edu.cn
  • Received Date: 11 Oct 2022
  • Rev Recd Date: 11 Nov 2022
  • Accepted Date: 18 Jan 2023
  • Available Online: 08 Mar 2023
  • In order to eliminate the uncertainty caused by the inclination of a beam, a dual polarization laser Doppler velocimetry system is established. We use a structure with two beams and two probes to detect the motion of the object. Firstly, the angle between the two beams is obtained by a calibration experiment. For any beam inclination, the scattered beam on the surface of a moving object is collected by a dual-probe device, and the Doppler shift of the two interference signals is obtained by combining the dual polarization optical path structure. Then, the refined framing algorithm is applied to demodulate the two interference signals in real time. The real speed of the object is obtained through the synthesis of the two speed components. The experimental results show that the average deviation between the measured value and the theoretical value can reach 1%−5% when the speed is within the range of 10 mm/min~1500 mm/min. In the process of non-stationary motion, the mean RMSE of the v-t image corrected by the refining frame segmentation algorithm is 1.19 mm/min. The system’s structure meets the requirements of stability and reliability, high precision and strong anti-interference ability in speed measurement.

     

  • loading
  • [1]
    YEH Y, CUMMINS H Z. Localized fluid flow measurements with an He-Ne laser spectrometer[J]. Applied Physics Letters, 1964, 4(10): 176-178. doi: 10.1063/1.1753925
    [2]
    OJO A O, FOND B, VAN WACHEM B G M, et al. Thermographic laser Doppler velocimetry[J]. Optics Letters, 2015, 40(20): 4759-4762. doi: 10.1364/OL.40.004759
    [3]
    BOU E, LY A, ROUL J, et al. Compact system for in situ laser Doppler velocimetry of blood flow[J]. Biomedical Optics Express, 2019, 10(11): 5862-5876. doi: 10.1364/BOE.10.005862
    [4]
    武颖丽, 吴振森. 基于希尔伯特变化的微小振动激光多普勒信号处理[J]. 中国光学,2013,6(3):415-420.

    WU Y L, WU ZH S. Micro-vibration laser Doppler signal processing based on Hilbert transform[J]. China Optics, 2013, 6(3): 415-420. (in Chinese)
    [5]
    ROSS M M. Combined differential and reference beam LDV for 3D velocity measurement[J]. Optics and Lasers in Engineering, 1997, 27(6): 587-619. doi: 10.1016/S0143-8166(96)00065-6
    [6]
    李秀明, 黄战华, 朱猛. 扩展光束型激光多普勒速度测量系统[J]. 光学 精密工程,2013,21(5):1102-1109. doi: 10.3788/OPE.20132105.1102

    LI X M, HUANG ZH H, ZHU M. Differential laser Doppler system with expanded beams for velocity measurement[J]. Optics and Precision Engineering, 2013, 21(5): 1102-1109. (in Chinese) doi: 10.3788/OPE.20132105.1102
    [7]
    闫亚东, 何俊华, 许瑞华, 等. 激光聚变冲击波被动式测速光学系统设计[J]. 光学 精密工程,2018,26(11):2662-2668. doi: 10.3788/OPE.20182611.2662

    YAN Y D, HE J H, XU R H, et al. Optical system for passive laser fusion shock wave velocity measurement[J]. Optics and Precision Engineering, 2018, 26(11): 2662-2668. (in Chinese) doi: 10.3788/OPE.20182611.2662
    [8]
    赵洪博. 基于多普勒效应的速度信号探测与频率解算算法研究[D]. 青岛: 青岛科技大学, 2019.

    ZHAO H B. Research on speed signal detection and frequency algorithm based on Doppler effect[D]. Qingdao: Qingdao University of Science & Technology, 2019. (in Chinese)
    [9]
    JIAN ZH, LONG X W. Laser Doppler velocimeter using a single longitudinal mode solid-state laser source[J]. Optics &Laser Technology, 2010, 42(7): 1167-1171.
    [10]
    CHEN J B, WANG X M, WU Y B, et al. Ultralow Doppler frequency extraction for the self-mixing dual-frequency laser velocimetry[J]. Applied Optics, 2022, 61(16): 4687-4692. doi: 10.1364/AO.455671
    [11]
    GENG Y H, JIANG CH L, KAN L L. Enhanced laser self-mixing Doppler velocity measurement with pre-feedback mirror[J]. Applied Optics, 2019, 58(27): 7571-7576. doi: 10.1364/AO.58.007571
    [12]
    李芝绒, 王胜强, 潘文. 双光束差动激光多普勒测速法在高冲击校准技术中的应用[J]. 计测技术,2013,33(4):21-25. doi: 10.3969/j.issn.1674-5795.2013.04.004

    LI ZH R, WANG SH Q, PAN W. Application of double beam differential laser Doppler velocimetry in high g impact calibration technology[J]. Metrology &Measurement Technology, 2013, 33(4): 21-25. (in Chinese) doi: 10.3969/j.issn.1674-5795.2013.04.004
    [13]
    ALEXANDROVA A S, TZOGANIS V, WELSCH C P. Laser diode self-mixing interferometry for velocity measurements[J]. Optical Engineering, 2015, 54(3): 034104. doi: 10.1117/1.OE.54.3.034104
    [14]
    FISCHER A. Limiting uncertainty relations in laser-based measurements of position and velocity due to quantum shot noise[J]. Entropy, 2019, 21(3): 264. doi: 10.3390/e21030264
    [15]
    XIANG ZH Y, WANG Q, HUANG R, et al. Position observation-based calibration method for an LDV/SINS integrated navigation system[J]. Applied Optics, 2021, 60(26): 7869-7877. doi: 10.1364/AO.430866
    [16]
    MARU K, YOSHIDA Y, YUKINARI M, et al. Differential laser Doppler velocimetry for cross-sectional velocity distribution measurements using 48-channel spatial encoding and nonmechanical scanning[J]. Optical Review, 2019, 26(5): 487-492. doi: 10.1007/s10043-019-00544-0
    [17]
    DE GEVIGNEY M D. Novel surface scanning inspection system for opaque and transparent substrates using laser Doppler velocimetry[C]. Proceedings of the 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), IEEE, 2018: 23-28.
    [18]
    FAN ZH, SUN Q, DU L, et al. Janus‐configured all fibre laser Doppler velocimetry[J]. IET Optoelectronics, 2018, 12(1): 50-54. doi: 10.1049/iet-opt.2017.0047
    [19]
    周健, 龙兴武. 基于Janus配置的激光多普勒测速仪[J]. 光电子·激光,2011,22(2):266-271.

    ZHOU J, LONG X W. Laser Doppler velocimeter based on Janus configuration[J]. Journal of Optoelectronics·Laser, 2011, 22(2): 266-271. (in Chinese)
    [20]
    张艳艳, 巩轲, 何淑芳, 等. 激光多普勒测速技术进展[J]. 激光与红外,2010,40(11):1157-1162. doi: 10.3969/j.issn.1001-5078.2010.11.001

    ZHANG Y Y, GONG K, HE SH F, et al. Progress in laser Doppler velocity measurement techniques[J]. Laser &Infrared, 2010, 40(11): 1157-1162. (in Chinese) doi: 10.3969/j.issn.1001-5078.2010.11.001
    [21]
    孙端. 短时傅里叶变换在工业测量中的应用[J]. 机电信息,2020(26):14-15. doi: 10.3969/j.issn.1671-0797.2020.26.007

    SUN D. Application of short time Fourier transform in industrial measurement[J]. Mechanical and Electrical Information, 2020(26): 14-15. (in Chinese) doi: 10.3969/j.issn.1671-0797.2020.26.007
    [22]
    HUANG D, LIU J, DENG L J, et al. An adaptive Kalman filter for online monitoring of mine wind speed[J]. Archives of Mining Sciences, 2019, 64(4): 813-827.
    [23]
    周金男, 邬战军, 范哲, 等. 车载激光多普勒测速仪的卡尔曼滤波算法研究[J]. 中国激光,2014,41(11):1102006. doi: 10.3788/CJL201441.1102006

    ZHOU J N, WU ZH J, FAN ZH, et al. Research on Kalman filter algorithm for vehicle laser Doppler velocimeter[J]. Chinese Journal of Lasers, 2014, 41(11): 1102006. (in Chinese) doi: 10.3788/CJL201441.1102006
    [24]
    王广玉, 窦磊, 窦杰. 基于自适应卡尔曼滤波的多目标跟踪算法[J]. 计算机应用,2022,42(S1):271-275.

    WANG G Y, DOU L, DOU J. Multiple object tracking algorithm based on adaptive Kalman filter[J]. Journal of Computer Applications, 2022, 42(S1): 271-275. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article views(581) PDF downloads(308) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return