Volume 16 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
ZHANG Xiao-bin, HAN Wei-na. Angle-multiplexed optically encrypted metasurfaces fabricated by ultrafast laser induced spatially selective-modified nanograting structures[J]. Chinese Optics, 2023, 16(4): 889-903. doi: 10.37188/CO.2022-0228
Citation: ZHANG Xiao-bin, HAN Wei-na. Angle-multiplexed optically encrypted metasurfaces fabricated by ultrafast laser induced spatially selective-modified nanograting structures[J]. Chinese Optics, 2023, 16(4): 889-903. doi: 10.37188/CO.2022-0228

Angle-multiplexed optically encrypted metasurfaces fabricated by ultrafast laser induced spatially selective-modified nanograting structures

doi: 10.37188/CO.2022-0228
Funds:  Supported by National Key R & D Program of China (No. 2022YFB4602900); Chongqing Natural Science Foundation of China (No. cstc2021jcyj-cxttX0003, No. CSTB2022NSCQ-MSX1322); National Natural Science Foundation of China (NSFC) (No. 52005041, No. 52235009)
More Information
  • Author Bio:

    ZHANG Xiao-bin (1998—), male, born in Jinzhong, Shanxi, master's degree. He obtained his bachelor's degree from Central South University in 2020 and mainly engages in research in micro-nano manufacturing and pump probe. E-mail: 3120200434@bit.edu.cn

    HAN Wei-na (1988—), female, PhD, Associate Researcher and Master's Supervisor at the Institute of Laser Micro-Nano Manufacturing at Beijing Institute of Technology, mainly engages in research on ultra-fast laser micro-nano manufacturing and reconfigurable photonic device processing. E-mail: hanwn@bit.edu.cn

  • Corresponding author: hanwn@bit.edu.cn
  • Received Date: 07 Nov 2022
  • Rev Recd Date: 25 Nov 2022
  • Accepted Date: 08 Mar 2023
  • Available Online: 08 Mar 2023
  • The optical encrypted metasurface based on one-dimensional grating diffraction requires the processing of mask or unit structure one by one, resulting in low efficiency. In addition, the poor uniformity of the structure formed by conventional ablated LIPSS can also affect device performance. Aming at the above problems, an optical metasurfaces processing method is proposed based on modified structures obtained by picosecond laser direct writing phase-change material Ge2Sb2Te5. Firstly, the dispersion properties of the prepared GST-modified gratings are first characterized, and the angle-multiplexed information encryption metasurfaces are designed by combining the polarization dependence of the modified grating, and the metasurface prepared by the proposed method is further demonstrated. In addition, the performance of encryption under natural light conditions and selective decryption reading and dynamic display under strong light conditions has been achieved. Compared to the conventional processing method, the proposed method can generate a series of grating structures in the form of simultaneous printing in a direct writing process, which improves the processing efficiency. At the same time, the grating structure obtained by processing has good uniformity and consistency, which improves the color rendering effect. A modified grating with an orientation angle difference of 16° is used to realize selective information reading without crosstalk resulting in uniform and bright structural colors. The processing strategy proposed in this paper has a profound application prospect in the fields of anti-counterfeiting, information encryption storage and wearable flexible display devices.

     

  • loading
  • [1]
    MORKEL T, ELOFF J H P, OLIVIER M S. An overview of image steganography[C]. Proceedings of the ISSA 2005 New Knowledge Today Conference, 2005: 1-11.
    [2]
    TAMAMURA Y, MIYAJI G. Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation[J]. Optical Materials Express, 2019, 9(7): 2902-2909. doi: 10.1364/OME.9.002902
    [3]
    YANG W H, XIAO SH M, SONG Q H, et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11(1): 1864. doi: 10.1038/s41467-020-15773-0
    [4]
    WANG L CH, NG R J H, SAFARI DINACHALI S, et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly[J]. ACS Photonics, 2016, 3(4): 627-633. doi: 10.1021/acsphotonics.5b00725
    [5]
    STEWART J W, AKSELROD G M, SMITH D R, et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 2017, 29(6): 1602971. doi: 10.1002/adma.201602971
    [6]
    LI M X, WANG D Y, ZHANG CH. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. doi: 10.37188/CO.2021-0108
    [7]
    HOU X Y, LI F ZH, SONG Y L, et al. Recent progress in responsive structural color[J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 2885-2900. doi: 10.1021/acs.jpclett.1c04219
    [8]
    LI X J, MA CH, YAN D X, et al. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. doi: 10.37188/CO.2021-0197
    [9]
    DENG J, GAO F, YUAN P CH, et al. Bidirectional nanoprinting based on bilayer metasurfaces[J]. Optics Express, 2022, 30(1): 377-388. doi: 10.1364/OE.448136
    [10]
    LI ZH F, ZHANG D J, LIU J, et al. Polarization‐assisted visual secret sharing encryption in metasurface hologram[J]. Advanced Photonics Research, 2021, 2(11): 2100175. doi: 10.1002/adpr.202100175
    [11]
    SONG M W, WANG D, KUDYSHEV Z A, et al. Enabling optical steganography, data storage, and encryption with plasmonic colors[J]. Laser &Photonics Reviews, 2021, 15(3): 2000343.
    [12]
    DENG Z L, TU Q A, WANG Y J, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography[J]. Advanced Materials, 2021, 33(43): 2103472. doi: 10.1002/adma.202103472
    [13]
    LI Y H, ZHANG X Y, ZOU T T, et al. Vivid structural color macropatterns created by flexible nanopainting of ultrafast lasers[J]. ACS Applied Materials &Interfaces, 2022, 14(18): 21758-21767.
    [14]
    ZHENG P X, DAI Q, LI Z L, et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 2021, 7(21): eabg0363. doi: 10.1126/sciadv.abg0363
    [15]
    DENG Z L, WANG ZH Q, LI F J, et al. Multi-freedom metasurface empowered vectorial holography[J]. Nanophotonics, 2022, 11(9): 1725-1739. doi: 10.1515/nanoph-2021-0662
    [16]
    ZHANG Y N, SHI L, HU D J, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 2019, 4(3): 601-609. doi: 10.1039/C9NH00003H
    [17]
    LI CH, STOIAN R, CHENG G H. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. doi: 10.3788/co.20181101.0001
    [18]
    GAN Z, FENG H, CHEN L, et al. Spatial modulation of nanopattern dimensions by combining interference lithography and grayscale-patterned secondary exposure[J]. Light Science & Applications, 2022(11), 1-10. https://doi.org/10.1038/s41377-022-00774-z.
    [19]
    KEILMANN F, BAI Y H. Periodic surface structures frozen into CO2 laser-melted quartz[J]. Applied Physics A, 1982, 29(1): 9-18. doi: 10.1007/BF00618110
    [20]
    ABERE M J, ZHONG M L, KRÜGER J, et al. Ultrafast laser-induced morphological transformations[J]. MRS Bulletin, 2016, 41(12): 969-974. doi: 10.1557/mrs.2016.271
    [21]
    HUANG J X, XU K, HU J, et al. Self-aligned plasmonic lithography for maskless fabrication of large-area long-range ordered 2D nanostructures[J]. Nano Letters, 2022, 22(15): 6223-6228. doi: 10.1021/acs.nanolett.2c01740
    [22]
    LIU K, LIAN M, QIN K R, et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface[J]. Light:Advanced Manufacturing, 2021, 2(3): 19.
    [23]
    WANG Q, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247
    [24]
    COTTON R L, SIEGEL J. Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses[J]. Journal of Applied Physics, 2012, 112(12): 123520. doi: 10.1063/1.4770493
    [25]
    ARYANA K, GASKINS J T, NAG J, et al. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices[J]. Nature Communications, 2021, 12(1): 774. doi: 10.1038/s41467-020-20661-8
    [26]
    SHIMOTSUMA Y, KAZANSKY P G, QIU J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405. doi: 10.1103/PhysRevLett.91.247405
    [27]
    KOLOBOV A V, FONS P, FRENKEL A I, et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials, 2004, 3(10): 703-708. doi: 10.1038/nmat1215
    [28]
    BONSE J, GRÄF S. Maxwell meets Marangoni—a review of theories on laser‐induced periodic surface structures[J]. Laser &Photonics Reviews, 2020, 14(10): 2000215.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views(418) PDF downloads(206) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return