Volume 12 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
LIU Hui-wen, YAO Dong, LIU Yi, ZHANG Hao. Mn2+-doped CsPbX3 (X=Cl, Br and I) perovskite nanocrystals and their applications[J]. Chinese Optics, 2019, 12(5): 933-951. doi: 10.3788/CO.20191205.0933
Citation: LIU Hui-wen, YAO Dong, LIU Yi, ZHANG Hao. Mn2+-doped CsPbX3 (X=Cl, Br and I) perovskite nanocrystals and their applications[J]. Chinese Optics, 2019, 12(5): 933-951. doi: 10.3788/CO.20191205.0933

Mn2+-doped CsPbX3 (X=Cl, Br and I) perovskite nanocrystals and their applications

Funds:

the National Key Research and Development Program of China 2016YFB0401701

National Natural Science Foundation of China 21773088

National Natural Science Foundation of China 51425303

JLU Science and Technology Innovative Research Team 2017TD-06

the Jilin Province Science and Technology Research 20190103024JH

More Information
  • Author Bio:

    LIU Hui-wen (1993-), Ph.D.candidate, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun.Her research interests are on the synthesis of perovskite nanocrystals and their applications in LEDs.E-mail:liuhuiwenjlu@163.com

    ZHANG Hao (1976-), Professor, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun.His research interests are on the synthesis and controllable self-assembly of photoelectric functional nanocrystals and polymer-based nanocomposites.E-mail:hao_zhang@jlu.edu.cn

  • Corresponding author: ZHANG Hao, E-mail:hao_zhang@jlu.edu.cn
  • Received Date: 10 Apr 2019
  • Rev Recd Date: 07 May 2019
  • Publish Date: 01 Oct 2019
  • Colloidal Mn2+ doped CsPbX3(X=Cl, Br, I) nanocrystals(NCs) are being explored extensively as alternative emitting materials, wherein highly efficient optical and optoelectronic processes can be achieved. Mn2+ doping in perovskite NCs also reveals several new fundamental aspects of doping and new dopant-induced optical properties through different methods of synthesis. Mn2+ doping exists in wide-band-gap perovskite hosts where the excitation energy is transferred to an Mn d-state, resulting in short-range tunable yellow-orange d-d emissions. Enormous efforts have been expended on understanding the doping process and designing highly efficient doped NCs. The unique electronic and fluorescent properties endow these Mn2+ doped perovskite NCs with various optoelectronic applications in light-emitting diodes(LEDs) and solar cells. Combining all these facts, this review focuses on the recent progress in synthesis methods, emission mechanism, and potential applications of Mn2+ doped CsPbX3 perovskite NCs and provides an outline for plausible future studies.

     

  • loading
  • [1]
    PAN J, QUAN L N, ZHAO Y B, et al.. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Advanced Materials, 2016, 28(39):8718-8725. doi: 10.1002/adma.201600784
    [2]
    LI X M, YU D J, CAO F, et al.. Healing all-inorganic perovskitefilms via recyclable dissolution recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability[J]. Advanced Functional Materials, 2016, 26(32):5903-5912. doi: 10.1002/adfm.201601571
    [3]
    ZHANG X L, XU B, ZHANG J B, et al.. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes:dual-phase CsPbBr3-CsPb2Br5 composites[J]. Advanced Functional Materials, 2016, 26(25):4595-4600. doi: 10.1002/adfm.201600958
    [4]
    NOZIK A J. Nanophotonics:making the most of photons[J]. Nature Nanotechnology, 2009, 4(9):548-549. doi: 10.1038/nnano.2009.253
    [5]
    YOON H C, KANG H, LEE S, et al.. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance[J]. ACS Applied Materials & Interfaces, 2016, 8(28):18189-18200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d62ee5f31802f1f554bd0ab4c556332c
    [6]
    ZHANG X J, WANG H C, TANG A C, et al.. Robust and stable narrow-band green emitter:an option for advanced wide-color-gamut backlight display[J]. Chemistry of Materials, 2016, 28(23):8493-8497. doi: 10.1021/acs.chemmater.6b04107
    [7]
    ZHANG X Y, LIN H, HUANG H, et al.. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinate dionomer[J]. Nano Letters, 2016, 16(2):1415-1420. doi: 10.1021/acs.nanolett.5b04959
    [8]
    DE ROO J, IBÁÑEZ M, GEIREGAT P, et al.. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016, 10(2):2071-2081. doi: 10.1021/acsnano.5b06295
    [9]
    PARK Y S, GUO SH J, Makarov N S, et al.. Room temperature single-photon emission from individual perovskite quantum dots[J]. ACS Nano, 2015, 9(10):10386-10393. doi: 10.1021/acsnano.5b04584
    [10]
    LI X M, WU Y, ZHANG SH L, et al.. CsPbX3 quantum dots for lighting and displays:room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15):2435-2445. doi: 10.1002/adfm.201600109
    [11]
    MEYNS M, PERÁLVAREZ M, HEUER-JUNGEMANN A, et al.. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs[J]. ACS Applied Materials & Interfaces, 2016, 8(30):19579-19586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b7bf7a0c31ea260ea0dc34f56b8052f
    [12]
    WEI ZH H, PERUMAL A, SU R, et al..Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes[J]. Nanoscale, 2016, 8(42):18021-18026. doi: 10.1039/C6NR05330K
    [13]
    DAS ADHIKARIS, GURIA A K, PRADHAN N. Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2019, 10(9):2250-2257. doi: 10.1021/acs.jpclett.9b00182
    [14]
    VLASKIN V A, JANSSEN N, VAN RIJSSEL J, et al.. Tunable dual emission in doped semiconductor nanocrystals[J]. Nano Letters, 2010, 10(9):3670-3674. doi: 10.1021/nl102135k
    [15]
    XIE R G, PENG X G. Synthesis of Cu-doped InP nanocrystals(d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters[J]. Journal of the American Chemical Society, 2009, 131(30):10645-10651. doi: 10.1021/ja903558r
    [16]
    VLASKIN V A, BARROWS C J, ERICKSON C S, et al.. Nanocrystaldiffusion doping[J]. Journal of the American Chemical Society, 2013, 135(38):14380-14389. doi: 10.1021/ja4072207
    [17]
    MAGANA D, PERERA S C, HARTER A G, et al.. Switching-on superparamagnetism in Mn/CdS equantum dots[J]. Journal of the American Chemical Society, 2006, 128(9):2931-2939. doi: 10.1021/ja055785t
    [18]
    STOWELL C A, WIACEK R J, SAUNDERS A E, et al.. Synthesis and characterization of dilutemagnetic semiconductor manganese-doped indium arsenide nanocrystals[J]. Nano Letters, 2003, 3(10):1441-1447. doi: 10.1021/nl034419+
    [19]
    NORRISD J, YAO N, CHARNOCK F T, et al.. High-quality manganese-doped ZnS nanocrystals[J]. Nano Letters, 2001, 1(1):3-7. doi: 10.1021/nl005503h
    [20]
    PRADHAN N, GOORSKEY D, THESSING J, et al.. An alternative of CdSe nanocrystale mitters:pure and tunable impurity emissions in ZnSe nanocrystals[J]. Journal of the American Chemical Society, 2005, 127(50):17586-17587. doi: 10.1021/ja055557z
    [21]
    PRADHAN N, BATTAGLIA D M, LIU Y CH, et al.. Efficient, stable, small, and water-soluble doped ZnSe nanocrystalemitters as non-cadmium biomedical labels[J]. Nano Letters, 2007, 7(2):312-317. doi: 10.1021/nl062336y
    [22]
    SRIVASTAVA B B, JANA S, PRADHAN N. Doping Cu in semiconductor nanocrystals:some old and some new physicalinsights[J]. Journal of the American Chemical Society, 2011, 133(4):1007-1015. doi: 10.1021/ja1089809
    [23]
    MANNA G, JANA S, BOSE R, et al.. Mn-doped multinary CIZS and AIZS nanocrystals[J]. The Journal of Physical Chemistry Letters, 2012, 3(18):2528-2534. doi: 10.1021/jz300978r
    [24]
    ACHARYA S, SARKAR S, PRADHAN N. Material diffusion anddoping of Mn in wurtzite ZnSe nanorods[J]. The Journal of Physical Chemistry C, 2013, 117(11):6006-6012. doi: 10.1021/jp400456t
    [25]
    KAMAT P V. Semiconductor nanocrystals:to dope or not todope[J]. The Journal of Physical Chemistry Letters, 2011, 2(21):2832-2833. doi: 10.1021/jz201345y
    [26]
    SANTRA P K, KAMAT P V. Mn-doped quantum dot sensitized solar cells:a strategy to boost efficiency over 5%[J]. Journal of the American Chemical Society, 2012, 134(5):2508-2511. doi: 10.1021/ja211224s
    [27]
    SARKAR S, GURIA A K, PRADHAN N. Influence of doping on semiconductor nanocrystals mediated charge transfer and photocatalytic organic reaction[J]. Chemical Communications, 2013, 49(54):6018-6020. doi: 10.1039/c3cc41599f
    [28]
    PRADHAN N, SARMA D D. Advances in light-emitting doped semiconductor nanocrystals[J]. The Journal of Physical Chemistry Letters, 2011, 2(21):2818-2826. doi: 10.1021/jz201132s
    [29]
    LIU W Y, LIN Q L, LI H B, et al.. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45):14954-14961. doi: 10.1021/jacs.6b08085
    [30]
    PAROBEK D, ROMAN B J, DONG Y T, et al.. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Letters, 2016, 16(12):7376-7380. doi: 10.1021/acs.nanolett.6b02772
    [31]
    LIU H W, WU ZH N, SHAO J R, et al.. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio[J]. ACS Nano, 2017, 11(2):2239-2247. doi: 10.1021/acsnano.6b08747
    [32]
    GURIA A K, DUTTA S K, DAS ADHIKARI S, et al.. Doping Mn2+ in lead halide perovskite nanocrystals:successes and challenges[J]. ACS Energy Letters, 2017, 2(5):1014-1021. doi: 10.1021/acsenergylett.7b00177
    [33]
    SWARNKAR A, RAVI V K, NAG A. Beyond colloidal cesium lead halide perovskite nanocrystals:analogous metal halides and doping[J]. ACS Energy Letters, 2017, 2(5):1089-1098. doi: 10.1021/acsenergylett.7b00191
    [34]
    ZHOU Y, CHEN J, BAKR O M, et al.. Metal-doped lead halide perovskites:synthesis, properties, and optoelectronic applications[J]. Chemistry of Materials, 2018, 30(19):6589-6613. doi: 10.1021/acs.chemmater.8b02989
    [35]
    CAI D, ZHU D H, YUAN X, et al.. Thermally stable luminescence of Mn2+ in Mn doped CsPbCl3 nanocrystals embedded in polydimethylsiloxane films[J]. Journal of Luminescence, 2018, 202:157-162. doi: 10.1016/j.jlumin.2018.05.061
    [36]
    HE M L, CHENG Y Z, YUAN R R, et al.. Mn-doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED[J]. Dyesand Pigments, 2018, 152:146-154. doi: 10.1016/j.dyepig.2018.01.045
    [37]
    HE M L, CHENG Y Z, SHEN L L, et al.. Mn-doped CsPbCl3 perovskite quantum dots(PQDs) incorporated into silica/alumina particles used for WLEDs[J]. Applied Surface Science, 2018, 448:400-406. doi: 10.1016/j.apsusc.2018.04.098
    [38]
    HE T CH, LI J Z, REN C, et al.. Strong two-photon absorption of Mn-doped CsPbCl3 perovskite nanocrystals[J]. Applied Physics Letters, 2017, 111(21):211105. doi: 10.1063/1.5008437
    [39]
    LIN CH CH, XU K Y, WANG D, et al.. Luminescent manganese-doped CsPbCl3 perovskite quantum dots[J]. Scientific Reports, 2017, 7:45906. doi: 10.1038/srep45906
    [40]
    XU W, LI F M, LIN F Y, et al.. Synthesis of CsPbCl3-Mn nanocrystals via cation exchange[J]. Advanced Optical Materials, 2017, 5(21):1700520. doi: 10.1002/adom.201700520
    [41]
    XU K Y, MEIJERINK A. Tuning exciton-Mn2+ energy transfer in mixed halide perovskite nanocrystals[J]. Chemistry of Materials, 2018, 30(15):5346-5352. doi: 10.1021/acs.chemmater.8b02157
    [42]
    YE SH, ZHAO M J, SONG J, et al.. Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane[J]. Nano Research, 2018, 11(9):4654-4663. doi: 10.1007/s12274-018-2046-4
    [43]
    HU Q S, LI ZH, TAN ZH F, et al.. Rare earth ion-doped CsPbBr3 nanocrystals[J]. Advanced Optical Materials, 2018, 6(2):1700864. doi: 10.1002/adom.201700864
    [44]
    HUANG G G, WANG CH L, XU SH H, et al.Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange[J]. Advanced Materials, 2017, 29(29):1700095. doi: 10.1002/adma.201700095
    [45]
    HE M L, CHENG Y Z, SHEN L L, et al.. Doping manganese into CsPb(Cl/Br)3 quantum dots glasses:dual-color emission and super thermal stability[J]. Journal of the American Ceramic Society, 2019, 102(3):1090-1100. doi: 10.1111/jace.15945
    [46]
    WANG P CH, DONG B H, CUI ZH J, et al.. Synthesis and characterization of Mn-doped CsPb(Cl/Br)3 perovskite nanocrystals with controllable dual-color emission[J]. RSC Advances, 2018, 8(4):1940-1947. doi: 10.1039/C7RA13306E
    [47]
    LI F, XIA ZH G, GONG Y, et al.. Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation-anion co-substitution exchange reaction[J]. Journal of Materials Chemistry C, 2017, 5(36):9281-9287. doi: 10.1039/C7TC03575F
    [48]
    WU H, XU SH H, SHAO H B, et al.. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%:a new single layer color conversion material for light-emitting diodes[J]. Nanoscale, 2017, 9(43):16858-16863. doi: 10.1039/C7NR06538H
    [49]
    ERWIN S C, ZU L J, HAFTEL M I, et al.. Doping semiconductor nanocrystals[J]. Nature, 2005, 436(7047):91-94. doi: 10.1038/nature03832
    [50]
    ACHARYA S, SARMA D D, JANA N R, et al.. An alternate route to high-quality ZnSe and Mn-Doped ZnSe nanocrystals[J]. The Journal of Physical Chemistry Letters, 2010, 1(2):485-488. doi: 10.1021/jz900291a
    [51]
    AMIT Y, LI Y Y, FRENKEL A I, et al.. From impurity doping to metallic growth in diffusion doping:properties and structure of silver-doped InAs nanocrystals[J]. ACS Nano, 2015, 9(11):10790-10800. doi: 10.1021/acsnano.5b03044
    [52]
    NELSON H D, BRADSHAW L R, BARROWS C J, et al.. Picosecond dynamics of excitonic magnetic polarons in colloidal diffusion-doped Cd1-xMnxSe quantum dots[J]. ACS Nano, 2015, 9(11):11177-11191. doi: 10.1021/acsnano.5b04719
    [53]
    PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites(CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6):3692-3696. doi: 10.1021/nl5048779
    [54]
    ZHU J R, YANG X L, ZHU Y H, et al.. Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio[J]. The Journal of Physical Chemistry Letters, 2017, 8(17):4167-4171. doi: 10.1021/acs.jpclett.7b01820
    [55]
    MIR W J, MAHOR Y, LOHAR A, et al.. Postsynthesis doping of Mn and Yb into CsPbX3(X=Cl, Br, or I) perovskite nanocrystals for down-conversion emission[J]. Chemistry of Materials, 2018, 30(22):8170-8178. doi: 10.1021/acs.chemmater.8b03066
    [56]
    BAGHBANZADEH M, CARBONE L, COZZOLI P D, et al.. Microwave-assisted synthesis of colloidal inorganic nanocrystals[J]. Angewandte Chemie International Edition, 2011, 50(48):11312-11359. doi: 10.1002/anie.201101274
    [57]
    LI L L, JI J, FEI R, et al.. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012, 22(14):2971-2979. doi: 10.1002/adfm.201200166
    [58]
    HE Y, ZHONG Y L, PENG F, et al.. One-pot microwave synthesis of water-dispersible, ultra photo-and pH-stable, and highly fluorescent silicon quantum dots[J]. Journal of the American Chemical Society, 2011, 133(36):14192-14195. doi: 10.1021/ja2048804
    [59]
    HE Y, LU H T, SAI L M, et al.. Microwave synthesis of water-dispersed CdTe/CdS/Zn Score-shell-shell quantum dots with excellent photostability and biocompatibility[J]. Advanced Materials, 2008, 20(18):3416-3421. doi: 10.1002/adma.200701166
    [60]
    DING K L, LU H, ZHANG Y CH, et al.. Microwave synthesis of microstructured and nanostructured metal chalcogenides from elemental precursors in phosphonium ionic liquids[J]. Journal of the American Chemical Society, 2014, 136(44):15465-15468. doi: 10.1021/ja508628q
    [61]
    LIU H W, WU ZH N, GAO H, et al.. One-step preparation of cesium lead halide CsPbX3(X=Cl, Br, and I) perovskite nanocrystals by microwave irradiation[J]. ACS Applied Materials & Interfaces, 2017, 9(49):42919-42927. doi: 10.1021/acsami.7b14677
    [62]
    LONG Z, REN H, SUN J H, et al.. High-throughput and tunable synthesis of colloidal CsPbX3 perovskite nanocrystals in a heterogeneous system by microwave irradiation[J]. Chemical Communications, 2017, 53(71):9914-9917. doi: 10.1039/C7CC04862A
    [63]
    PAN Q, HU H CH, ZOU Y T, et al.. Microwave-assisted synthesis of high-quality "all-inorganic" CsPbX3(X=Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(42):10947-10954. doi: 10.1039/C7TC03774K
    [64]
    LI Y X, HUANG H, XIONG Y, et al.. Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis[J]. Angewandte Chemie International Edition, 2018, 57(20):5833-5837. doi: 10.1002/anie.201713332
    [65]
    DENG D H, PAN X L, YU L, et al.. Toward N-doped graphene via solvothermal synthesis[J]. Chemistry of Materials, 2011, 23(5):1188-1193. doi: 10.1021/cm102666r
    [66]
    LI X M, LIU Y L, SONG X F, et al.. Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes[J]. Angewandte Chemie International Edition, 2015, 54(6):1759-1764. doi: 10.1002/anie.201406836
    [67]
    YANG H G, LIU G, QIAO SH ZH, et al.. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets[J]. Journal of the American Chemical Society, 2009, 131(11):4078-4083. doi: 10.1021/ja808790p
    [68]
    ZHONG D, CAI B, WANG X L, et al.. Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells[J]. Nano Energy, 2015, 11:409-418. doi: 10.1016/j.nanoen.2014.11.014
    [69]
    CHEN D Q, FANG G L, CHEN X, et al.. Mn-doped CsPbCl3 perovskite nanocrystals:solvothermal synthesis, dual-color luminescence and improved stability[J]. Journal of Materials Chemistry C, 2018, 6(33):8990-8998. doi: 10.1039/C8TC03139H
    [70]
    QIAO T, PAROBEK D, DONG Y T, et al.. Photoinduced Mn doping in cesium lead halide perovskite nanocrystals[J]. Nanoscale, 2019, 11(12):5247-5253. doi: 10.1039/C8NR10439E
    [71]
    PAROBEK D, DONG Y T, QIAO T, et al.. Direct hot-injection synthesis of Mn-doped CsPbBr3 nanocrystals[J]. Chemistry of Materials, 2018, 30(9):2939-2944. doi: 10.1021/acs.chemmater.8b00310
    [72]
    XU K Y, LIN CH CH, XIE X B, et al.. Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29(10):4265-4272. doi: 10.1021/acs.chemmater.7b00345
    [73]
    IMRAN M, CALIGIURI V, WANG M J, et al.. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals[J]. Journal of the American Chemical Society, 2018, 140(7):2656-2664. doi: 10.1021/jacs.7b13477
    [74]
    LI X M, CAO F, YU D J, et al.. All inorganic halide perovskites nano system:synthesis, structural features, optical properties and optoelectronic applications[J]. Small, 2017, 13(9):1603996. doi: 10.1002/smll.201603996
    [75]
    ZHANG Y P, LIU J Y, WANG Z Y, et al.. Synthesis, properties, and optical applications of low-dimensional perovskites[J]. Chemical Communications, 2016, 52(94):13637-13655. doi: 10.1039/C6CC06425F
    [76]
    MIR W J, JAGADEESWARARAO M, DAS S, et al.. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets[J]. ACS Energy Letters, 2017, 2(3):537-543. doi: 10.1021/acsenergylett.6b00741
    [77]
    BISWAS A, BAKTHAVATSALAM R, KUNDU J. Efficient exciton to dopant energy transfer in Mn2+-doped(C4H9NH3)2-PbBr4 two-dimensional(2D) layered perovskites[J]. Chemistry of Materials, 2017, 29(18):7816-7825. doi: 10.1021/acs.chemmater.7b02429
    [78]
    DAS ADHIKARI S, DUTTA A, DUTTA S K, et al.. Layered perovskites L2(Pb1-xMnx)Cl4 to Mn-doped CsPbCl3 perovskite platelets[J]. ACS Energy Letters, 2018, 3(6):1247-1253. doi: 10.1021/acsenergylett.8b00653
    [79]
    DE A, MONDAL N, SAMANTA A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals[J]. Nanoscale, 2017, 9(43):16722-16727. doi: 10.1039/C7NR06745C
    [80]
    SHEN ZH H, QIAO B, XU ZH, et al.. The luminescence properties of CsPbxM1-xBr3 perovskite nanocrystals transformed from Cs4PbBr6 mediated by various divalent bromide MBr2 salts[J]. Nanoscale, 2019, 11(9):4008-4014. doi: 10.1039/C8NR09845J
    [81]
    SHAO H, BAI X, CUI H N, et al.. White light emission in Bi3+/Mn2+ ion co-doped CsPbCl3 perovskite nanocrystals[J]. Nanoscale, 2018, 10(3):1023-1029. doi: 10.1039/C7NR08136G
    [82]
    AKKERMAN Q A, MEGGIOLARO D, DANG ZH Y, et al.. Fluorescent alloy CsPbxMn1-xI3 perovskite nanocrystals with high structural and optical stability[J]. ACS Energy Letters, 2017, 2(9):2183-2186. doi: 10.1021/acsenergylett.7b00707
    [83]
    LIN F Y, LI F M, LAI ZH W, et al.. Mn-doped cesium lead chloride perovskite nanocrystals:demonstration of oxygen sensing capability based on luminescent dopants and host-dopant energy transfer[J]. ACS Applied Materials & Interfaces, 2018, 10(27):23335-23343. doi: 10.1021/acsami.8b06329
    [84]
    YE SH, SUN J Y, HAN Y H, et al.. Confining Mn2+-doped lead halide perovskite in Zeolite-Y as ultrastable orange-red phosphor composites for white light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2018, 10(29):24656-24664. doi: 10.1021/acsami.8b08342
    [85]
    ZOU SH H, LIU Y SH, LI J H, et al.. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 139(33):11443-11450. doi: 10.1021/jacs.7b04000
    [86]
    BAI D L, ZHANG J R, JIN ZH W, et al.. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Letters, 2018, 3(4):970-978. doi: 10.1021/acsenergylett.8b00270
    [87]
    WANG Q, ZHANG X SH, JIN ZH W, et al.. Energy-down-shift CsPbCl3:Mn quantum dots for boosting the efficiency and stability of perovskite solar cells[J]. ACS Energy Letters, 2017, 2(7):1479-1486. doi: 10.1021/acsenergylett.7b00375
    [88]
    LIANG J, LIU Z H, QIU L B, et al.. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes[J]. Advanced Energy Materials, 2018, 8(20):1800504. doi: 10.1002/aenm.201800504
    [89]
    LOCARDI F, CIRIGNANO M, BARANOV D, et al.. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals[J]. Journal of the American Chemical Society, 2018, 140(40):12989-12995. doi: 10.1021/jacs.8b07983
    [90]
    NANDHA K N, NAG A. Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites[J]. Chemical Communications, 2018, 54(41):5205-5208. doi: 10.1039/C8CC01982G
    [91]
    TANG CH, CHEN CH Y, XU W W, et al.. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst[J]. Journal of Materials Chemistry A, 2019, 7(12):6911-6919. doi: 10.1039/C9TA00550A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views(2563) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return