Volume 12 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
LI Jin-zhao, CAO Huan-qi, ZHANG Chao, YANG Li-ying, YIN Shou-gen. Vapor assisted doctor blading process to fabricate perovskite thin films[J]. Chinese Optics, 2019, 12(5): 1028-1039. doi: 10.3788/CO.20191205.1028
Citation: LI Jin-zhao, CAO Huan-qi, ZHANG Chao, YANG Li-ying, YIN Shou-gen. Vapor assisted doctor blading process to fabricate perovskite thin films[J]. Chinese Optics, 2019, 12(5): 1028-1039. doi: 10.3788/CO.20191205.1028

Vapor assisted doctor blading process to fabricate perovskite thin films

Funds:

National Natural Science Foundation of China 61504097

Natural Science Foundation of Tianjin 17JCYBJC21000

Natural Science Foundation of Tianjin 18JCZDJC96900

Technical Expert 18JCTPJC49900

the Scientific Developing Foundation of the Tianjin Education Commission 2017ZD14

the Scientific Developing Foundation of the Tianjin Education Commission 2018ZD09

More Information
  • Corresponding author: CAO Huan-qi, E-mail:caoh@tjut.edu.cn
  • Received Date: 07 Jan 2019
  • Rev Recd Date: 28 Feb 2019
  • Publish Date: 01 Oct 2019
  • Perovskite solar cells(PSCs) have attracted widespread attention due to their high efficiency and easy preparation with solution method. Normally, perovskite thin films are prepared via spin coating. Spin coating is not suitable for large-area preparation due to its drawbacks, including nonuniformity of film thickness and excessive waste of materials. Large-area preparation of uniform perovskite solar cells is still a big challenge today. Therefore, a vapor-assisted doctor blading(VADB) process is demonstrated here to prepare large-area and highly crystallized perovskite thin films. In addition, by changing the concentration of the precursor solution, perovskite films of different thicknesses are produced. Furthermore, we find that the performance of PSCs with a precursor concentration of 1.0 M is the best. The devices show the highest efficiencies of 17.76%(average 16.9%) and 16.3% under simulated AM1.5G(100 mW/cm2) solar light on an active area of 0.112 5 cm2 and 1.0 cm2, respectively. This provides a new possible way for the large-area preparation of PSCs.

     

  • loading
  • [1]
    丁武昌.光管理在晶体硅电池中的应用[J].中国光学, 2013, 6(5):717-728. http://www.chineseoptics.net.cn/CN/abstract/abstract9056.shtml

    DING W CH. Light management in crystalline silicon solar cells[J]. Chinese Optics, 2013, 6(5):717-728.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9056.shtml
    [2]
    苏彦勋, 柯沅锋, 蔡士良, 等.层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池[J].中国光学, 2014, 7(2):267-273. http://www.chineseoptics.net.cn/CN/abstract/abstract9127.shtml

    SU Y X, KE Y F, CAI SH L, et al.. Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell[J]. Chinese Optics, 2014, 7(2):267-273.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9127.shtml
    [3]
    谢世伟, 肖啸, 谭建军, 等.基于石墨烯基电极染料敏化太阳能电池的研究进展[J].中国光学, 2014, 7(1):47-56. http://www.chineseoptics.net.cn/CN/abstract/abstract9095.shtml

    XIE SH W, XIAO X, TAN J J, et al.. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chinese Optics, 2014, 7(1):47-56.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9095.shtml
    [4]
    WANG Q, DONG Q F, LI T, et al.. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells[J]. Advanced Materials, 2016, 28(31):6734-6739. doi: 10.1002/adma.201600969
    [5]
    DONG Q F, FANG Y J, SHAO Y CH, et al.. Electron-hole diffusion lengths >175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225):967-970. doi: 10.1126/science.aaa5760
    [6]
    ZHAO Y CH, ZHOU W K, ZHOU X, et al.. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications[J]. Light:Science & Applications, 2017, 6(5):e16243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201702013
    [7]
    KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051. doi: 10.1021/ja809598r
    [8]
    JEON N J, NA H, JUNG E H, et al.. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8):682-689. doi: 10.1038/s41560-018-0200-6
    [9]
    National Renewable Energy Laboratory. Best research-cell efficiencies[EB/OL]. https://upload.wikimedia.org/wikipedia/commons/3/38/CellPVeff%28rev190416%29.pdf.
    [10]
    XIAO ZH G, BI CH, SHAO Y CH, et al.. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy & Environmental Science, 2014, 7(8):2619-2623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d7d8fbb60f78a940110831cc33e82faa
    [11]
    XIAO ZH G, DONG Q F, BI CH, et al.. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J]. Advanced Materials, 2014, 26(37):6503-6509. doi: 10.1002/adma.201401685
    [12]
    ZHAO P J, KIM B J, REN X D, et al.. Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells[J]. Advanced Materials, 2018, 30(49):1802763. doi: 10.1002/adma.201802763
    [13]
    DING J, HAN Q W, GE QQ, et al.. Fully air-bladed high-efficiency perovskite photovoltaics[J]. Joule, 2019, 3(2):402-416. doi: 10.1016/j.joule.2018.10.025
    [14]
    BARROWS A T, PEARSON A J, KWAK C K, et al.. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition[J]. Energy & Environmental Science, 2014, 7(9):2944-2950. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dcfc504ae06035b04e399af189270b4
    [15]
    HUANG H B, SHI J J, ZHU L F, et al.. Two-step ultrasonic spray deposition of CH3NH3PbI3for efficient and large-area perovskite solar cell[J]. Nano Energy, 2016, 27:352-358. doi: 10.1016/j.nanoen.2016.07.026
    [16]
    BU T L, LI J, ZHENG F, et al.. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nature Communications, 2018, 9(1):4609. doi: 10.1038/s41467-018-07099-9
    [17]
    GIL-ESCRIG L, MOMBLONA C, LA-PLACA M G, et al.. Vacuum deposited triple-cation mixed-halide perovskite solar cells[J]. Advanced Energy Materials, 2018, 8(14):1703506. doi: 10.1002/aenm.201703506
    [18]
    CHEN X M, CAO H Q, YU H, et al.. Large-area, high-quality organic-inorganic hybrid perovskite thin films via a controlled vapor-solid reaction[J]. Journal of Materials Chemistry A, 2016, 4(23):9124-9132. doi: 10.1039/C6TA03180C
    [19]
    ZHAO Z B, CAO H Q, LI J ZH, et al.. Strategies to obtain stoichiometric perovskite by sequential vapor deposition learned by modeling the diffusion-dominated formation of perovskite films[J]. Applied Physics Express, 2018, 11(10):105501. doi: 10.7567/APEX.11.105501
    [20]
    LI J B, MUNIR R, FAN Y Y, et al.. Phase transition control for high-performance blade-coated perovskite solar cells[J]. Joule, 2018, 2(7):1313-1330. doi: 10.1016/j.joule.2018.04.011
    [21]
    CHEN H, YE F, TANG W T, et al.. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules[J]. Nature, 2017, 550(7674):92-95. doi: 10.1038/nature23877
    [22]
    DENG Y H, DONG Q F, BI CH, et al.. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer[J]. Advanced Energy Materials, 2016, 6(11):1600372. doi: 10.1002/aenm.201600372
    [23]
    DENG Y H, PENG E, SHAO Y CH, et al.. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science, 2015, 8(5):1544-1550. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3559c26d91f8fe0c4fc0e296cdf89c52
    [24]
    MOHAMAD D K, GRIFFIN J, BRACHER C, et al.. Spray-cast multilayer organometal perovskite solar cells fabricated in air[J]. Advanced Energy Materials, 2016, 6(22):1600994. doi: 10.1002/aenm.201600994
    [25]
    VRIJ A, PATERSON B, NUNKOOSING K, et al.. Perceived advantages and disadvantages of secrets disclosure[J]. Personality and Individual Differences, 2003, 35(3):593-602. doi: 10.1016/S0191-8869(02)00221-0
    [26]
    LIANG CH, LI P W, GU H, et al.. One-Step inkjet printed perovskite in air for efficient light harvesting(Solar RRL 2/2018)[J]. Solar RRL, 2018, 2(2):1770150. http://cn.bing.com/academic/profile?id=c814dc05f198f47b33cba0b84b31866c&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    MATHIES F, EGGERS H, RICHARDS B S, et al.. Inkjet-printed triple cation perovskite solar cells[J]. ACS Applied Energy Materials, 2018, 1(5):1834-1839. doi: 10.1021/acsaem.8b00222
    [28]
    WHITAKER J, KIM D H, LARSON B W, et al.. Scalable slot-die coating of high performance perovskite solar cells[J]. Sustainable Energy & Fuels, 2018, 2(11):2442-2449. http://cn.bing.com/academic/profile?id=04b429b66a469684dc1ad2d98a9b89ca&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    LEE D, JUNG Y S, HEO Y J, et al.. Slot-die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(18):16133-16139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b259cfb798c34cfd70d17a2df87cf1f4
    [30]
    VILA J, MOMBLONA C, BOIX P P, et al.. Vapor-deposited perovskites:the route to high-performance solar cell production?[J]. Joule, 2017, 1(3):431-442. doi: 10.1016/j.joule.2017.07.014
    [31]
    LONGO G, MOMBLONA C, LA-PLACA M G, et al.. Fully vacuum-processed wide band gap mixed-halide perovskite solar cells[J]. ACS Energy Letters, 2018, 3(1):214-219. doi: 10.1021/acsenergylett.7b01217
    [32]
    刘娜, 樊哲一, 任杰灵, 等.蒸汽辅助溶液过程制备钙钛矿材料及钙钛矿太阳能电池[J].中国光学, 2017, 10(5):568-577. http://www.chineseoptics.net.cn/CN/abstract/abstract9544.shtml

    LIU N, FAN ZH Y, REN J L, et al.. Preperation of perovskite materials and perovskite solar cells by vapor-assisted solution process[J]. Chinese Optics, 2017, 10(5):568-577.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9544.shtml
    [33]
    JIANG Y, REMEIKA M, HU ZH H, et al.. Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules[J]. Advanced Energy Materials, 2019, 9(13):1803047. doi: 10.1002/aenm.201803047
    [34]
    CHEN X M, CAO H Q, YU H, et al.. Large-area, high-quality organic-inorganic hybrid perovskite thin films via a controlled vapor-solid reaction[J]. Journal of Materials Chemistry A, 2016, 4(23):9124-9132. doi: 10.1039/C6TA03180C
    [35]
    CHOU Y T, KO Y T, YAN M F. Fluid flow model for ceramic tape casting[J]. Journal of the American Ceramic Society, 1987, 70(10):C-280-C-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/jace.12295
    [36]
    KIM H J, KRANE M J M, TRUMBLE K P, et al.. Analytical fluid flow models for tape casting[J]. Journal of the American Ceramic Society, 2006, 89(9):2769-2775. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1551-2916.2006.01163.x
    [37]
    ZHAO Y X, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews, 2016, 45(3):655-689. doi: 10.1039/C4CS00458B
    [38]
    ZHAO Y CH, LI Q, ZHOU W K, et al.. Double-side-passivated perovskite solar cells with ultra-low potential loss[J]. Solar RRL, 2019, 3(2):1800296. doi: 10.1002/solr.201800296
    [39]
    LIU Z H, HU J N, JIAO H Y, et al.. Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells[J]. Advanced Materials, 2017, 29(23):1606774. doi: 10.1002/adma.201606774
    [40]
    PHAM N D, TIONG V T, CHEN P, et al.. Enhanced perovskite electronic properties via a modified lead(Ⅱ) chloride lewis acid-base adduct and their effect in high-efficiency perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(10):5195-5203. doi: 10.1039/C6TA11139D
    [41]
    YANG I S, SOHN M R, SUNG S D, et al.. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability[J]. Nano Energy, 2017, 32:414-421. doi: 10.1016/j.nanoen.2016.12.059
    [42]
    STOLTERFOHT M, WOLFF C M, M RQUEZ J A, et al.. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells[J]. Nature Energy, 2018, 3(10):847-854. doi: 10.1038/s41560-018-0219-8
    [43]
    YANG M J, ZHOU Y Y, ZENG Y N, et al.. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%[J]. Advanced Materials, 2015, 27(41):6363-6370. doi: 10.1002/adma.201502586
    [44]
    LI X, BI D Q, YI CH Y, et al.. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294):58-62. doi: 10.1126/science.aaf8060
    [45]
    YANG M J, LI ZH, REESE M O, et al.. Perovskite ink with wide processing window for scalable high-efficiency solar cells[J]. Nature Energy, 2017, 2(5):17038. doi: 10.1038/nenergy.2017.38
    [46]
    LI P W, LIANG CH, BAO B, et al.. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells[J]. Nano Energy, 2018, 46:203-211. doi: 10.1016/j.nanoen.2018.01.049
    [47]
    ZHANG M, WILKINSON B, LIAO Y X, et al.. Electrode design to overcome substrate transparency limitations for highly efficient 1 cm2 mesoscopic perovskite solar cells[J]. Joule, 2018, 2(12):2694-2705. doi: 10.1016/j.joule.2018.08.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views(3300) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return