Citation: | WANG Xi, ZHAO Zhi-guo, QIN Xiao-jun, XIONG Ji-guang, DONG Chao, BAI Yang, LI Yu-jing, CHEN Qi. Perovskite solar cells based on a spray-coating tin oxide film[J]. Chinese Optics, 2019, 12(5): 1040-1047. doi: 10.3788/CO.20191205.1040 |
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051. doi: 10.1021/ja809598r
|
[2] |
ZHOU H P, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546. doi: 10.1126/science.1254050
|
[3] |
YANG W S, NOH J H, JEON N J, et al.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237. doi: 10.1126/science.aaa9272
|
[4] |
BI D Q, YI C Y, LUO J SH, et al.. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1(10):16142. doi: 10.1038/nenergy.2016.142
|
[5] |
National Renewable Energy Laboratory. Best research-cell efficiency[EB/OL]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
|
[6] |
LEIJTENS T, EPERON G E, PATHAK S, et al.. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4:2885. doi: 10.1038/ncomms3885
|
[7] |
JIANG Q, ZHANG X W, YOU J B. SnO2:a wonderful electron transport layer for perovskite solar cells[J]. Small, 2018, 14(31):1801154. doi: 10.1002/smll.201801154
|
[8] |
JIANG Q, CHU Z M, WANG P Y, et al.. Planar-structure perovskite solar cells with efficiency beyond 21%[J]. Advanced Materials, 2017, 29(46):1703852. doi: 10.1002/adma.201703852
|
[9] |
BAENA J P C, STEIER L, TRESS W, et al.. Highly efficient planar perovskite solar cells through band alignment engineering[J]. Energy & Environmental Science, 2015, 8(10):2928-2934. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235545163/
|
[10] |
ANARAKI E H, KERMANPUR A, STEIER L, et al.. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10):3128-3134. http://cn.bing.com/academic/profile?id=324103d1934e557bbf32b0424bc07363&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
YANG G, LEI H W, TAO H, et al.. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers[J]. Small, 2017, 13(2):1601769. doi: 10.1002/smll.201601769
|
[12] |
LIU X, TSAI K W, ZHU Z L, et al.. A low-temperature, solution processable tin oxide electron-transporting layer prepared by the dual-fuel combusion method for efficient perovskite solar cells[J]. Advanced Materials Interfaces, 2016, 3(13):1600122. doi: 10.1002/admi.201600122
|
[13] |
CHEN J Y, CHUEH C C, ZHU Z L, et al.. Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 164:47-55. doi: 10.1016/j.solmat.2017.02.008
|
[14] |
胡明江, 晋兵营.基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究[J].分析化学, 2019, 47(3):363-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201903005
HU M J, JIN B Y. Research on film type acetone sensor based on copper oxide/zinc oxide heterostructure nanoflower[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3):363-370.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201903005
|
[15] |
王艺, 姜晓, 谭峰, 等.新型氧化铈/氧化锆-梯度扩散薄膜技术用于水体和沉积物中无机砷的形态分析[J].分析化学, 2018, 46(11):1829-1835. doi: 10.11895/j.issn.0253-3820.181395
WANG Y, JIANG X, TAN F, et al.. CeO2/ZrO2-based diffusive gradients in thin films technique for measurement of As(Ⅲ) and As(Ⅴ) in water and sediment[J]. Chinese Journal of Analytical Chemistry, 2018, 46(11):1829-1835.(in Chinese) doi: 10.11895/j.issn.0253-3820.181395
|
[16] |
黄芳龙, 陈旦初.金属氧化物薄膜的超声雾化喷涂[J].太阳能学报, 1989, 10(4):418-420. http://www.cnki.com.cn/Article/CJFDTotal-TYLX198904014.htm
HUANG F L, CHEN D CH. Ultrasonic atomization spraying of metal oxide film[J]. Acta Energiae Solaris Sinica, 1989, 10(4):418-420.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-TYLX198904014.htm
|
[17] |
贾莉, 吕喆, 黄喜强, 等.用于燃料电池的氧化锆薄膜制备方法进展[J].电源技术, 2004, 28(7):449-451. doi: 10.3969/j.issn.1002-087X.2004.07.016
JIA L, LÜ ZH, HUANG X Q, et al.. Progress on manufacturing of zirconia film for fuel cells[J]. Chinese Journal of Power Sources, 2004, 28(7):449-451.(in Chinese) doi: 10.3969/j.issn.1002-087X.2004.07.016
|
[18] |
KRUNKS M, MELLIKOV E. Zinc oxide thin films by the spray pyrolysis method[J]. Thin Solid Films, 1995, 270(1-2):33-36. doi: 10.1016/0040-6090(95)06893-7
|
[19] |
SHINDE V R MAHADIK S B, GUJAR T P, et al.. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis[J]. Applied Surface Science, 2006, 252(20):487-7492. https://www.sciencedirect.com/science/article/pii/S0169433205012602
|
[20] |
PEREDNIS D, GAUCKLER L J. Thin film deposition using spray pyrolysis[J]. Journal of Electroceramics, 2005, 14(2):103-111. doi: 10.1007/s10832-005-0870-x
|
[21] |
SHAMALA K S, MURTHY L C S, RAO K N. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods[J]. Bulletin of Materials Science, 2004, 27(3):295-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b62d9607fcfac572799a0964339740cc
|
[22] |
CHEN B, YANG M J, PRIYA S, et al.. Origin of J-V hysteresis in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5):905-917. doi: 10.1021/acs.jpclett.6b00215
|
[23] |
TU B, SHAO Y F, CHEN W, et al.. Novel molecular doping mechanism for n-doping of SnO2 via triphenylphosphine oxide and its effect on perovskite solar cells[J]. Advanced Materials, 2019, 31(15):1805944. doi: 10.1002/adma.201805944
|
[24] |
GUILLÉN E, RAMOS F J, ANTA J A, et al.. Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques[J]. The Journal of Physical Chemistry C, 2014, 118(40):22913-22922. doi: 10.1021/jp5069076
|
[25] |
孙加振, 邝旻翾, 宋延林.喷墨打印中"咖啡环"效应的调控及应用[J].化学进展, 2015, 27(8):979-985. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201508001
SUN J ZH, KUANG M X, SONG Y L. Control and application of "coffee ring" effect in inkjet printing[J]. Progress in Chemistry, 2015, 27(8):979-985.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201508001
|
[26] |
SEARS W M, GEE M A. Mechanics of film formation during the spray pyrolysis of tin oxide[J]. Thin Solid Films, 1988, 165(1):265-277. doi: 10.1016/0040-6090(88)90698-0
|
[27] |
张培旭, 金永日, 崔俐, 等.基于超声喷泉的超声雾化结合固相萃取法提取西洋参叶中8种人参皂苷[J].分析化学, 2018, 46(4):594-600. http://d.old.wanfangdata.com.cn/Periodical/fxhx201804019
ZHANG P X, JIN Y R, CUI L, et al.. Extraction of eight ginsenosides from leaves of Panax quinquefolium L. by ultrasoinc fountain-based ultrasonic-assisted nebulization extraction coupled with solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4):594-600.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201804019
|