Citation: | YUAN Hai-dong, ZHOU Long, SU Jie, LIN Zhen-hua, CHANG Jing-jing, HAO Yue. Investigation of self-doping in perovskites with vacancy defects based on first principles[J]. Chinese Optics, 2019, 12(5): 1048-1056. doi: 10.3788/CO.20191205.1048 |
[1] |
LEE M M, TEUSCHER J, MIYASAKA T, et al.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647. doi: 10.1126/science.1228604
|
[2] |
STRANKS S D, SNAITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nature Nanotechnology, 2015, 10(5):391-402. doi: 10.1038/nnano.2015.90
|
[3] |
WANG J P, WANG N N, JIN Y ZH, et al.. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes[J]. Advanced Materials, 2015, 27(14):2311-2316. doi: 10.1002/adma.201405217
|
[4] |
LI F, MA CH, WANG H, et al.. Ambipolar solution-processed hybrid perovskite phototransistors[J]. Nature Communications, 2015, 6:8238. doi: 10.1038/ncomms9238
|
[5] |
CHIN X Y, CORTECCHIA D, YIN J, et al.. Lead iodide perovskite light-emitting field-effect transistor[J]. Nature Communications, 2015, 6:7383. doi: 10.1038/ncomms8383
|
[6] |
ZHU H M, Fu Y P, MENG F, et al.. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6):636-642. doi: 10.1038/nmat4271
|
[7] |
YOO E J, LYU M, YUN J H, et al.. Resistive switching behavior in organic inorganic hybrid CH3NH3PbI3-xClx perovskite for resistive random access memory devices[J]. Advanced Materials, 2015, 27(40):6170-6175. doi: 10.1002/adma.201502889
|
[8] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051. doi: 10.1021/ja809598r
|
[9] |
National Renewable Energy Laboratory(NREL). Research cell efficiency records[EB/OL].[2019-01-10]. https://www.nrel.gov/pv/assets/images/efficiencychart.png.
|
[10] |
ZHOU Y Y, GAME O S, PANG SH P, et al.. Microstructures of organometal trihalide perovskites for solar cells:their evolution from solutions and characterization[J]. The Journal of Physical Chemistry Letters, 2015, 6(23):4827-4839. doi: 10.1021/acs.jpclett.5b01843
|
[11] |
ZHENG L L, ZHANG D F, MA Y ZH, et al.. Morphology control of the perovskite films for efficient solar cells[J]. Dalton Transactions, 2015, 44(23):10582-10593. doi: 10.1039/C4DT03869J
|
[12] |
MEI A Y, LI X, LIU L F, et al.. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194):295-298. doi: 10.1126/science.1254763
|
[13] |
DOCAMPO P, BALL J M, DARWICH M, et al.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nature Communications, 2013, 4:2761. doi: 10.1038/ncomms3761
|
[14] |
ROLDÁN-CARMONA C, MALINKIEWICZ O, SORIANO A, et al.. Flexible high efficiency perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(3):994-997. http://cn.bing.com/academic/profile?id=54837badce92fa9ac689833770abbb78&encoded=0&v=paper_preview&mkt=zh-cn
|
[15] |
DYMSHITS A, ROTEM A, ETGAR L, et al.. High voltage in hole conductor free organometal halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(48):20776-20781. doi: 10.1039/C4TA05613B
|
[16] |
HEO J H, SONG D H, IM S H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process[J]. Advanced Materials, 2014, 26(48):8179-8183. doi: 10.1002/adma.201403140
|
[17] |
LIANG P W, CHUEH C C, XIN X K, et al.. High-performance planar-heterojunction solar cells based on ternary halide large-band-gap perovskites[J]. Advanced Energy Materials, 2015, 5(1):1400960. doi: 10.1002/aenm.201400960
|
[18] |
DIMESSO L, DIMAMAY M, HAMBURGER M, et al.. Properties of CH3NH3PbX3(X=I, Br, Cl) powders as precursors for organic/inorganic solar cells[J]. Chemistry of Materials, 2014, 26(23):6762-6770. doi: 10.1021/cm503240k
|
[19] |
NAVAS J, SÁNCHEZ-CORONILLA A, GALLARDO J J, et al.. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+[J]. Nanoscale, 2015, 7(14):6216-6229. doi: 10.1039/C5NR00041F
|
[20] |
FENG H J, PAUDEL T R, TSYMBAL E Y, et al.. Tunable optical properties and charge separation in CH3NH3SnxPb1-xI3/TiO2-based planar perovskites cells[J]. Journal of the American Chemical Society, 2015, 137(25):8227-8236. doi: 10.1021/jacs.5b04015
|
[21] |
ABDELHADY A L, SAIDAMINOV M I, MURALI B, et al.. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals[J]. The Journal of Physical Chemistry Letters, 2016, 7(2):295-301. doi: 10.1021/acs.jpclett.5b02681
|
[22] |
KAZIM S, NAZEERUDDIN M K, GRÄTZEL M, et al.. Perovskite as light harvester:a game changer in photovoltaics[J]. Angewandte Chemie International Edition, 2014, 53(11):2812-2824. doi: 10.1002/anie.201308719
|
[23] |
CHANG J J, LIN ZH H, ZHU H, et al.. Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions[J]. Journal of Materials Chemistry A, 2016, 4(42):16546-16552. doi: 10.1039/C6TA06851K
|
[24] |
WANG ZH K, LI M, YANG Y G, et al.. High efficiency Pb-In binary metal perovskite solar cells[J]. Advanced Materials, 2016, 28(31):6695-6703. doi: 10.1002/adma.201600626
|
[25] |
CAO D H, STOUMPOS C C, MALLIAKAS C D, et al.. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?[J]. APL Materials, 2014, 2(9):091101. doi: 10.1063/1.4895038
|
[26] |
LEE Y H, LUO J SH, HUMPHRY-BAKER R, et al.. Unraveling the reasons for efficiency loss in perovskite solar cells[J]. Advanced Functional Materials, 2015, 25(25):3925-3933. doi: 10.1002/adfm.201501024
|
[27] |
KIM J, LEE S H, LEE J H, et al.. The role of intrinsic defects in methylammonium lead iodide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(8):1312-1317. doi: 10.1021/jz500370k
|