Volume 12 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
CHEN Hong-yu, WANG Yue-fei, YAN Jun, LI Lin, WANG He-bin, BIAN Wan-peng, LI Bing-sheng. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. doi: 10.3788/CO.20191205.1057
Citation: CHEN Hong-yu, WANG Yue-fei, YAN Jun, LI Lin, WANG He-bin, BIAN Wan-peng, LI Bing-sheng. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. doi: 10.3788/CO.20191205.1057

Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction

Funds:

National Natural Science Foundation of China 61874037

National Natural Science Foundation of China 11474076

Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education 2017KM003

Fundamental Research Funds for the Central Universities HIT.NSRIF.2019060

More Information
  • Efficient and stable p-type doping is difficult to achieve. To solve this problem, high-quality p-type Se microwires were fabricated using chemical vapor deposition. A photodetector based on a single Se microtube shows broadband photoresponses with a peak responsivity of 2.8 mA/W at 600 nm under 5 V bias. The cutoff wavelength is estimated to be 675 nm. A p-n heterojunction photodetector using a p-type Se microwire and n-type CH3NH3PbCl3 was also fabricated. Compared to the single Se microtube, the p-n heterojunction photodetector shows obvious reduction in response time and 850% improvement in responsivity. The experimental results indicate that p-n junctions have promising applications in high-performance photodetectors.

     

  • These authors contribute equally
  • loading
  • [1]
    CHEN H Y, LIU H, ZHANG ZH M, et al.. Nanostructured photodetectors:from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3):403-433. doi: 10.1002/adma.201503534
    [2]
    ZHANG D, ZHENG W, LIN R C, et al.. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed[J]. Journal of Alloys and Compounds, 2018, 735:150-154. doi: 10.1016/j.jallcom.2017.11.037
    [3]
    OH S, KIM C K, KIM J. High responsivity β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes[J]. ACS Photonics, 2018, 5(3):1123-1128. doi: 10.1021/acsphotonics.7b01486
    [4]
    LI D B, JIANG K, SUN X J, et al.. Algan photonics:recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1):43-110. doi: 10.1364/AOP.10.000043
    [5]
    XU ZH X, ZHANG Y L, WANG ZH N. ZnO-based photodetector:from photon detector to pyro-phototronic effect enhanced detector[J]. Journal of Physics D:Applied Physics, 2019, 52(22):223001. doi: 10.1088/1361-6463/ab0728
    [6]
    孙华山, 刘可为, 陈洪宇, 等.Au电极厚度对MgZnO紫外探测器性能的影响[J].发光学报, 2015, 36(2):200-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201502012

    SUN H SH, LIU K W, CHEN H Y, et al.. Effect of Au electrode thickness on the performance of MgZnO UV detector[J]. Chinese Journal of Luminescence, 2015, 36(2):200-205.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201502012
    [7]
    薛金玲, 马剑钢.化学气相沉积法制备β-Ga2O3纳米结构及其缺陷发光性质研究[J].发光学报, 2017, 38(10):1273-1279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201710002

    XUE J L, MA J G. Defects luminescence behavior of β-Ga2O3 nanostructures synthesized by chemical vapor deposition[J]. Chinese Journal of Luminescence, 2017, 38(10):1273-1279.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201710002
    [8]
    QI J, QIAO W Q, ZHOU X K, et al.. High-detectivity all-polymer photodetectors with spectral response from 300 to 1100 nm[J]. Macromolecular Chemistry and Physics, 2016, 217(15):1683-1689. doi: 10.1002/macp.201600061
    [9]
    LUO L B, YANG X B, LIANG F X, et al.. Transparent and flexible selenium nanobelt-based visible light photodetector[J]. CrystEngComm, 2012, 14(6):1942-1947. doi: 10.1039/c2ce06420k
    [10]
    QIU X D, WANG Z J, HOU X T, et al.. Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon[J]. Photonics Research, 2019, 7(3):351-358. doi: 10.1364/PRJ.7.000351
    [11]
    YU P P, HU K, CHEN H Y, et al.. Novel p-p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity[J]. Advanced Functional Materials, 2017, 27(38):1703166. doi: 10.1002/adfm.201703166
    [12]
    GONG F, FANG H H, WANG P, et al.. Visible to near-infrared photodetectors based on MoS2 vertical schottky junctions[J]. Nanotechnology, 2017, 28(48):484002. doi: 10.1088/1361-6528/aa9172
    [13]
    WANG L, JIE J SH, SHAO ZH B, et al.. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19):2910-2919. doi: 10.1002/adfm.201500216
    [14]
    ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9):091101. doi: 10.1063/1.3099572
    [15]
    MELEDIN D V, MARRONE D P, TONG C Y E, et al.. A 1-Thz superconducting hot-electron-bolometer receiver for astronomical observations[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10):2338-2343. doi: 10.1109/TMTT.2004.835979
    [16]
    TONG C Y E, MELEDIN D V, MARRONE D P, et al.. Near field vector beam measurements at 1 THz[J]. IEEE Microwave and Wireless Components Letters, 2003, 13(6):235-237. doi: 10.1109/LMWC.2003.814602
    [17]
    MITTLEMAN D M. Twenty years of terahertz imaging[J]. Optics Express, 2018, 26(8):9417-9431. doi: 10.1364/OE.26.009417
    [18]
    CHEN H Y, LIU K W, HU L F, et al.. New concept ultraviolet photodetectors[J]. Mater Today, 2015, 18(9):493-502. doi: 10.1016/j.mattod.2015.06.001
    [19]
    SZE S M. Semiconductor Devices:Physics and Technology[M]. 2nd ed. New York:John Wiley & Sons, 2008.
    [20]
    ZHAO B, WANG F, CHEN H Y, et al.. An ultrahigh responsivity(9.7 mA W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Advanced Functional Materials, 2017, 27(17):1700264. doi: 10.1002/adfm.201700264
    [21]
    HAJNAL Z, MIRÓ J, KISS G, et al.. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3[J]. Journal of Applied Physics, 1999, 86(7):3792-3796. doi: 10.1063/1.371289
    [22]
    MORT J. Acoustoelectric current saturation in trigonal selenium[J]. Physical Review Letters, 1967, 18(14):540-543. doi: 10.1103/PhysRevLett.18.540
    [23]
    MASUZAWA T, SAITO I, YAMADA T, et al.. Development of an amorphous selenium-based photodetector driven by a diamond cold cathode[J]. Sensors, 2013, 13(10):13744-13778. doi: 10.3390/s131013744
    [24]
    LIU CH, LI W ZH, ZHANG C L, et al.. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%[J]. Journal of the American Chemical Society, 2018, 140(11):3825-3828. doi: 10.1021/jacs.7b13229
    [25]
    MACULAN G, SHEIKH A D, ABDELHADY A L, et al.. CH3NH3PbCl3 single crystals:inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19):3781-3786. doi: 10.1021/acs.jpclett.5b01666
    [26]
    HU K, CHEN H Y, JIANG M M, et al.. Broadband photoresponse enhancement of a high-performance t-Se microtube photodetector by plasmonic metallic nanoparticles[J]. Advanced Functional Materials, 2016, 26(36):6641-6648. doi: 10.1002/adfm.201602408
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1613) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return