Citation: | CHEN Hong-yu, WANG Yue-fei, YAN Jun, LI Lin, WANG He-bin, BIAN Wan-peng, LI Bing-sheng. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. doi: 10.3788/CO.20191205.1057 |
[1] |
CHEN H Y, LIU H, ZHANG ZH M, et al.. Nanostructured photodetectors:from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3):403-433. doi: 10.1002/adma.201503534
|
[2] |
ZHANG D, ZHENG W, LIN R C, et al.. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed[J]. Journal of Alloys and Compounds, 2018, 735:150-154. doi: 10.1016/j.jallcom.2017.11.037
|
[3] |
OH S, KIM C K, KIM J. High responsivity β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes[J]. ACS Photonics, 2018, 5(3):1123-1128. doi: 10.1021/acsphotonics.7b01486
|
[4] |
LI D B, JIANG K, SUN X J, et al.. Algan photonics:recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1):43-110. doi: 10.1364/AOP.10.000043
|
[5] |
XU ZH X, ZHANG Y L, WANG ZH N. ZnO-based photodetector:from photon detector to pyro-phototronic effect enhanced detector[J]. Journal of Physics D:Applied Physics, 2019, 52(22):223001. doi: 10.1088/1361-6463/ab0728
|
[6] |
孙华山, 刘可为, 陈洪宇, 等.Au电极厚度对MgZnO紫外探测器性能的影响[J].发光学报, 2015, 36(2):200-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201502012
SUN H SH, LIU K W, CHEN H Y, et al.. Effect of Au electrode thickness on the performance of MgZnO UV detector[J]. Chinese Journal of Luminescence, 2015, 36(2):200-205.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201502012
|
[7] |
薛金玲, 马剑钢.化学气相沉积法制备β-Ga2O3纳米结构及其缺陷发光性质研究[J].发光学报, 2017, 38(10):1273-1279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201710002
XUE J L, MA J G. Defects luminescence behavior of β-Ga2O3 nanostructures synthesized by chemical vapor deposition[J]. Chinese Journal of Luminescence, 2017, 38(10):1273-1279.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201710002
|
[8] |
QI J, QIAO W Q, ZHOU X K, et al.. High-detectivity all-polymer photodetectors with spectral response from 300 to 1100 nm[J]. Macromolecular Chemistry and Physics, 2016, 217(15):1683-1689. doi: 10.1002/macp.201600061
|
[9] |
LUO L B, YANG X B, LIANG F X, et al.. Transparent and flexible selenium nanobelt-based visible light photodetector[J]. CrystEngComm, 2012, 14(6):1942-1947. doi: 10.1039/c2ce06420k
|
[10] |
QIU X D, WANG Z J, HOU X T, et al.. Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon[J]. Photonics Research, 2019, 7(3):351-358. doi: 10.1364/PRJ.7.000351
|
[11] |
YU P P, HU K, CHEN H Y, et al.. Novel p-p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity[J]. Advanced Functional Materials, 2017, 27(38):1703166. doi: 10.1002/adfm.201703166
|
[12] |
GONG F, FANG H H, WANG P, et al.. Visible to near-infrared photodetectors based on MoS2 vertical schottky junctions[J]. Nanotechnology, 2017, 28(48):484002. doi: 10.1088/1361-6528/aa9172
|
[13] |
WANG L, JIE J SH, SHAO ZH B, et al.. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19):2910-2919. doi: 10.1002/adfm.201500216
|
[14] |
ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9):091101. doi: 10.1063/1.3099572
|
[15] |
MELEDIN D V, MARRONE D P, TONG C Y E, et al.. A 1-Thz superconducting hot-electron-bolometer receiver for astronomical observations[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10):2338-2343. doi: 10.1109/TMTT.2004.835979
|
[16] |
TONG C Y E, MELEDIN D V, MARRONE D P, et al.. Near field vector beam measurements at 1 THz[J]. IEEE Microwave and Wireless Components Letters, 2003, 13(6):235-237. doi: 10.1109/LMWC.2003.814602
|
[17] |
MITTLEMAN D M. Twenty years of terahertz imaging[J]. Optics Express, 2018, 26(8):9417-9431. doi: 10.1364/OE.26.009417
|
[18] |
CHEN H Y, LIU K W, HU L F, et al.. New concept ultraviolet photodetectors[J]. Mater Today, 2015, 18(9):493-502. doi: 10.1016/j.mattod.2015.06.001
|
[19] |
SZE S M. Semiconductor Devices:Physics and Technology[M]. 2nd ed. New York:John Wiley & Sons, 2008.
|
[20] |
ZHAO B, WANG F, CHEN H Y, et al.. An ultrahigh responsivity(9.7 mA W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Advanced Functional Materials, 2017, 27(17):1700264. doi: 10.1002/adfm.201700264
|
[21] |
HAJNAL Z, MIRÓ J, KISS G, et al.. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3[J]. Journal of Applied Physics, 1999, 86(7):3792-3796. doi: 10.1063/1.371289
|
[22] |
MORT J. Acoustoelectric current saturation in trigonal selenium[J]. Physical Review Letters, 1967, 18(14):540-543. doi: 10.1103/PhysRevLett.18.540
|
[23] |
MASUZAWA T, SAITO I, YAMADA T, et al.. Development of an amorphous selenium-based photodetector driven by a diamond cold cathode[J]. Sensors, 2013, 13(10):13744-13778. doi: 10.3390/s131013744
|
[24] |
LIU CH, LI W ZH, ZHANG C L, et al.. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%[J]. Journal of the American Chemical Society, 2018, 140(11):3825-3828. doi: 10.1021/jacs.7b13229
|
[25] |
MACULAN G, SHEIKH A D, ABDELHADY A L, et al.. CH3NH3PbCl3 single crystals:inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19):3781-3786. doi: 10.1021/acs.jpclett.5b01666
|
[26] |
HU K, CHEN H Y, JIANG M M, et al.. Broadband photoresponse enhancement of a high-performance t-Se microtube photodetector by plasmonic metallic nanoparticles[J]. Advanced Functional Materials, 2016, 26(36):6641-6648. doi: 10.1002/adfm.201602408
|