Volume 12 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
GUAN Hai-jun, LIU Yun-qing, ZHANG Feng-jing. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm[J]. Chinese Optics, 2019, 12(5): 1131-1138. doi: 10.3788/CO.20191205.1131
Citation: GUAN Hai-jun, LIU Yun-qing, ZHANG Feng-jing. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm[J]. Chinese Optics, 2019, 12(5): 1131-1138. doi: 10.3788/CO.20191205.1131

Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm

Funds:

National Natural Science Foundation of China 60505201

Jilin Youth Research Foundation for Science and Technology Development 20160520175JH

More Information
  • Corresponding author: LIU Yun-qing
  • Received Date: 04 Apr 2019
  • Rev Recd Date: 04 Jun 2019
  • Publish Date: 01 Oct 2019
  • In recent years, the dilemma regarding the limited performance of coherent free-space optical(CFSO) communication with phase modulation caused by the phase fluctuations and intensity scintillations associated with atmospheric turbulence has gradually become the focus of research. In order to improve system performance, a CFSO communication system with quadrature phase-shift keying modulation(QPSK) is studied in this paper. With consideration of log-normal amplitude fluctuations and Gaussian distribution conditions, a two-stage joint carrier phase recovery(CPR) algorithm is proposed. With this scheme, the simulation results show that the phase noise of the system can be greatly reduced and its symbol error rate is three orders lower than that of the single-stage M-th power CPR algorithm. Therefore, the two-stage joint CPR algorithm holds significant improvement in CFSO communication systems.

     

  • loading
  • [1]
    HOU L F, ZHANG L, KIM J. Energy modeling and power measurement for mobile robots[J]. Energies, 2019, 12(1):27.
    [2]
    马爽, 吴志勇, 高世杰, 等.改进的大气激光通信PPM调制解调系统设计[J].哈尔滨工业大学学报, 2016, 48(5):105-109. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201605018

    MA SH, WU ZH Y, GAO SH J, et al.. Design of modified atmospheric laser communication PPM modulation-demodulation system[J]. Journal of Harbin Institute of Technology, 2016, 48(5):105-109.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201605018
    [3]
    宋少华, 仝召民.用于激光背光源电视的扫描分光与消散斑系统[J].光学 精密工程, 2019, 27(2):271-278. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201902001

    SONG SH H, TONG ZH M. Scanning beam splitting and speckle reduction system for laser backlight TV[J]. Opt. Precision Eng., 2019, 27(2):271-278.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201902001
    [4]
    吴伟辉, 杨永强, 毛桂生, 等.激光选区熔化自由制造异质材料零件[J].光学 精密工程, 2019, 27(3):517-526. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201903002

    WU W H, YANG Y Q, MAO G SH, et al.. Free manufacturing of heterogeneous materials part by selective laser melting[J]. Opt. Precision Eng., 2019, 27(3):517-526.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201903002
    [5]
    LI X L, GENG T W, MA SH, et al.. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation[J]. Applied Optics, 2017, 56(16):4695-4701. doi: 10.1364/AO.56.004695
    [6]
    LI L, GENG T W, WANG Y, et al.. Free-space optical communication using coherent detection and double adaptive detection thresholds[J]. IEEE Photonics Journal, 2019, 11(1):7900217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6275320c1ba777016b5b267317ce864
    [7]
    涂焱阳, 吴志勇, 马爽, 等.阈值可变的高速光通信脉冲位置调制的帧同步[J].中国激光, 2017, 44(11):106008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201711027

    TU Y Y, WU ZH Y, MA SH, et al.. Frame synchronization of pulse position modulation in high-speed optical communication with variable threshold[J]. Chinese Lasers, 2017, 44(11):106008.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201711027
    [8]
    LI Y T, GUO S A, GENG T W, et al.. Evaluation on the capacity and outage performance of the free space optical system impaired by timing jitters over an aggregate channel[J]. Optical Engineering, 2017, 56(7):076108. doi: 10.1117/1.OE.56.7.076108
    [9]
    徐春凤, 倪小龙, 刘智.激光大气湍流传输中的光强闪烁特性[J].光学 精密工程, 2016, 24(10s):183-189. http://www.eope.net/gxjmgc/CN/abstract/abstract16628.shtml

    XU CH F, NI X L, LIU ZH. Scintillation in turbulent atmosphere laser communication[J]. Opt. Precision Eng., 2016, 24(10s):183-189.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract16628.shtml
    [10]
    谢伟良, 汤俊雄.基于Turbo码的大气无线光通信系统特性分析[J].中国激光, 2003, 30(9):835-838. doi: 10.3321/j.issn:0258-7025.2003.09.015

    XIE W L, TANG J X. Analysis on characterization of atmospheric optical wireless communication system based on turbo code[J]. Chinese Lasers, 2003, 30(9):835-838.(in Chinese) doi: 10.3321/j.issn:0258-7025.2003.09.015
    [11]
    高宠, 马晶, 谭立英, 等.大气光通信中大气闪烁时间平滑效应研究[J].光学学报, 2006, 26(4):481-486. doi: 10.3321/j.issn:0253-2239.2006.04.001

    GAO CH, MA J, TAN L Y, et al.. Time-averaging effects for atmospheric scintillation in atmospheric optical communication[J]. Acta Optica Sinica, 2006, 26(4):481-486.(in Chinese) doi: 10.3321/j.issn:0253-2239.2006.04.001
    [12]
    陈纯毅, 杨华民, 姜会林, 等.大气光通信中大气湍流影响抑制技术研究进展[J].兵工学报, 2009, 30(6):779-791. doi: 10.3321/j.issn:1000-1093.2009.06.022

    CHEN CH Y, YANG H M, JIANG H L, et al.. Research progress of mitigation technologies of turbulence effects in atmospheric optical communication[J]. Acta Armamentarii, 2009, 30(6):779-791.(in Chinese) doi: 10.3321/j.issn:1000-1093.2009.06.022
    [13]
    IP E, KAHN J M. feedforward carrier recovery for coherent optical communications[J]. Journal of Lightwave Technology, 2005, 23(9):2675-2692. https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-25-9-2675
    [14]
    LI X, CAO Y W, YU S, et al.. A simplified feedforward carrier recovery algorithm for coherent optical QAM system[J]. Journal of Lightwave Technology, 2011, 29(5):801-807. doi: 10.1109/JLT.2011.2106197
    [15]
    VITERBI A. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission[J]. IEEE Transactions on Information Theory, 1983, 29(4):543-551. https://ieeexplore.ieee.org/document/1056713
    [16]
    LI M, CVIJETIC M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction[J]. Applide Optics, 2015, 54(6):1453-1462. doi: 10.1364/AO.54.001453
    [17]
    NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3):207-211. doi: 10.1364/JOSA.66.000207
    [18]
    FRIED D L. Optical heterodyne detection of an atmospherically distorted signal wave front[J]. Proceedings of the IEEE, 1967, 55(1):57-77. doi: 10.1109/PROC.1967.5377
    [19]
    FRIED D L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures[J]. Journal of the Optical Society of America, 1966, 56(10):1372-1379. doi: 10.1364/JOSA.56.001372
    [20]
    FRIED D L. Optical heterodyne detection of an atmospherically distorted signal wave front[J]. Proceedings of the IEEE, 1967, 55(1):57-77. doi: 10.1109/PROC.1967.5377
    [21]
    BELMONTE A, KAHN J M. Capacity of coherent free-space optical links using diversity-combining techniques[J]. Optics Express, 2009, 17(15):12601-12611. doi: 10.1364/OE.17.012601
    [22]
    LY-GAGNON D S, TSUKAMOTO S, KATOH K, et al. Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation[J]. Journal of Lightwave Technology, 2006, 24(1):12-21. doi: 10.1109/JLT.2005.860477
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(1399) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return