| Citation: | ZHANG Xing-chao, PAN Rui, HAN Jia-yue, DONG Xiang, WANG Jun. Recent progress and prospects of topological quantum material-based photodetectors[J]. Chinese Optics, 2021, 14(1): 43-65. doi: 10.37188/CO.2020-0096 | 
	                | [1] | 
					 ATABAKI A H, MOAZENI S, PAVANELLO F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556(7701): 349-354. doi:  10.1038/s41586-018-0028-z 
						
					 | 
			
| [2] | 
					 王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程,2019,48(1):0102001. doi:  10.3788/IRLA201948.0102001 
					WANG J, JIANG Y D. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 0102001. (in Chinese) doi:  10.3788/IRLA201948.0102001 
						
					 | 
			
| [3] | 
					 张猛蛟, 蔡毅, 江峰, 等. 紫外增强硅基成像探测器进展[J]. 中国光学,2019,12(1):19-37. doi:  10.3788/co.20191201.0019 
					ZHANG M J, CAI Y, JIANG F, et al. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19-37. (in Chinese) doi:  10.3788/co.20191201.0019 
						
					 | 
			
| [4] | 
					 XIA F N, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843. doi:  10.1038/nnano.2009.292 
						
					 | 
			
| [5] | 
					 罗曼, 吴峰, 张莉丽, 等. 二维材料偏振响应光电探测[J]. 南通大学学报(自然科学版),2019,18(3):1-10. 
					LUO M, WU F, ZHANG L L, et al. Detection of polarized light using two-dimensional atomic materials[J]. Journal of Nantong University (Natural Science Edition) 
						
					 | 
			
| [6] | 
					 公爽, 田金荣, 李克轩, 等. 新型二维材料在固体激光器中的应用研究进展[J]. 中国光学,2018,11(1):18-30. doi:  10.3788/co.20181101.0018 
					GONG SH, TIAN J R, LI K X, et al. Advances in new two-dimensional materials and its application in solid-state lasers[J]. Chinese Optics, 2018, 11(1): 18-30. (in Chinese) doi:  10.3788/co.20181101.0018 
						
					 | 
			
| [7] | 
					 WANG F K, ZHANG Y, GAO Y, et al. 2D metal chalcogenides for IR photodetection[J]. Small, 2019, 15(30): 1901347. doi:  10.1002/smll.201901347 
						
					 | 
			
| [8] | 
					 BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 2018, 12(10): 601-607. doi:  10.1038/s41566-018-0239-8 
						
					 | 
			
| [9] | 
					 LI Y F, ZHANG Y T, YU Y, et al. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams[J]. Photonics Research, 2020, 8(3): 368-374. doi:  10.1364/PRJ.380249 
						
					 | 
			
| [10] | 
					 何珂, 薛其坤. 拓扑量子材料与量子反常霍尔效应[J]. 材料研究学报,2019,29(3):161-177. 
					HE K, XUE Q K. Topological quantum materials and quantum anomalous hall effect[J]. Chinese Journal of Materials Research, 2019, 29(3): 161-177. (in Chinese) 
						
					 | 
			
| [11] | 
					 崔亚宁, 任伟. 拓扑量子材料的研究进展[J]. 自然杂志,2019,41(5):348-357. 
					CUI Y N, REN W. Research advances of topological quantum materials[J]. Chinese Journal of Nature, 2019, 41(5): 348-357. (in Chinese) 
						
					 | 
			
| [12] | 
					 GUI X, PLETIKOSIC I, CAO H B, et al. A new magnetic topological quantum material candidate by design[J]. ACS Central Science, 2019, 5: 900-910. 
						
					 | 
			
| [13] | 
					 ZHANG T T, JIANG Y, SONG ZH D, et al. Catalogue of topological electronic materials[J]. Nature, 2019, 566(7745): 475-479. doi:  10.1038/s41586-019-0944-6 
						
					 | 
			
| [14] | 
					 WANG A Q, YE X G, YU D P, et al. Topological semimetal nanostructures from properties to topotronics[J]. ACS nano, 2020, 14(4): 3755-3778. 
						
					 | 
			
| [15] | 
					 GAO H, VENDERBOS J W F, KIN Y, et al. Topological semimetals from first principles[J]. Annual Review of Materials Research, 2019, 49: 153-83. doi:  10.1146/annurev-matsci-070218-010049 
						
					 | 
			
| [16] | 
					 WANG SH, LIN B C, Wang A Q, et al. Quantum transport in Dirac and Weyl semimetals: a review[J]. Advances in Physics:X, 2017, 2(3): 518-544. doi:  10.1080/23746149.2017.1327329 
						
					 | 
			
| [17] | 
					 DAS P K, DI SANTE D, CILENTO F, et al. Electronic properties of candidate type-Ⅱ Weyl semimetal WTe2. a review perspective[J]. Electronic Structure, 2019, 1(1): 014003. doi:  10.1088/2516-1075/ab0835 
						
					 | 
			
| [18] | 
					 SCHÜFFELGEN P, SCHMITT T, SCHLEENVOIGT M, et al. Exploiting topological matter for Majorana physics and devices[J]. Solid-State Electronics, 2019, 155: 99-104. doi:  10.1016/j.sse.2019.03.005 
						
					 | 
			
| [19] | 
					 YUE Z J, WANG X L, GU M. Topological Insulator Materials for Advanced Optoelectronic Devices[M]. LUO H X. Advanced Topological Insulators. Beverly, MA, USA: Scrivener Publishing LLC, 2019: 45-70. 
						
					 | 
			
| [20] | 
					 WANG H CH, WANG J. Electron transport in Dirac and Weyl semimetals[J]. Chinese Physics B, 2018, 27(10): 107402. doi:  10.1088/1674-1056/27/10/107402 
						
					 | 
			
| [21] | 
					 张玉平, 唐利斌. 拓扑绝缘体光电探测器研究进展[J]. 红外技术,2020,42(1):1-9. 
					ZHANG Y P, TANG L B. Research progress in photodetectors based on topological insulators[J]. Infrared Technology, 2020, 42(1): 1-9. (in Chinese) 
						
					 | 
			
| [22] | 
					 CHAN C K, LINDNER N H, REFAEL G, et al. Photocurrents in Weyl semimetals[J]. Physical Review B, 2017, 95(4): 041104. doi:  10.1103/PhysRevB.95.041104 
						
					 | 
			
| [23] | 
					 MA J CH, DENG K, ZHENG L, et al. Experimental progress on layered topological semimetals[J]. 2D Materials, 2019, 6(3): 032001. doi:  10.1088/2053-1583/ab0902 
						
					 | 
			
| [24] | 
					 ZHE SH, RUI C, KARIM K, et al. Two-dimensional tellurium: progress, challenges, and prospects[J]. Nano-Micro Letters, 2020, 12: 1-34. 
						
					 | 
			
| [25] | 
					 HAN J Y, WANG J. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions[J]. Chinese Physics B, 2019, 28(1): 017103. doi:  10.1088/1674-1056/28/1/017103 
						
					 | 
			
| [26] | 
					 LI Y, SHI ZH F, LI X J, et al. Photodetectors based on inorganic halide perovskites: materials and devices[J]. Chinese Physics B, 2019, 28(1): 017803. doi:  10.1088/1674-1056/28/1/017803 
						
					 | 
			
| [27] | 
					 WANG J, HAN J Y, CHEN X Q, et al. Design strategies for two-dimensional material photodetectors to enhance device performance[J]. InfoMat, 2019, 1(1): 33-53. doi:  10.1002/inf2.12004 
						
					 | 
			
| [28] | 
					 胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J]. 物理学报,2019,68(12):120701. 
					HU W D, LI Q, CHEN X SH, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese) 
						
					 | 
			
| [29] | 
					 FANG Y R, GE Y Q, WANG C, et al. Mid-infrared photonics using 2D materials: status and challenges[J]. Laser &Photonics Reviews, 2020, 14(1): 1900098. 
						
					 | 
			
| [30] | 
					 CHEN X Q, SHEHZAD K, GAO L, et al. Graphene hybrid structures for integrated and flexible optoelectronics[J]. Advanced Materials, 2020, 32(27): 1902039. 
						
					 | 
			
| [31] | 
					 ZHANG CH, ZHANG Y, YUAN X, et al. Quantum hall effect based on Weyl orbits in Cd3As2[J]. Nature, 2019, 565(7739): 331-336. doi:  10.1038/s41586-018-0798-3 
						
					 | 
			
| [32] | 
					 TANG F D, REN Y F, WANG P P, et al. Three-dimensional quantum hall effect and metal-insulator transition in ZrTe5[J]. Nature, 2019, 569(7757): 537-541. doi:  10.1038/s41586-019-1180-9 
						
					 | 
			
| [33] | 
					 VERGNIORY M G, ELCORO L, FELSER C, et al. A complete catalogue of high-quality topological materials[J]. Nature, 2019, 566(7745): 480-485. doi:  10.1038/s41586-019-0954-4 
						
					 | 
			
| [34] | 
					 TANG F, PO H C, VISHWANATH A, et al. Comprehensive search for topological materials using symmetry indicators[J]. Nature, 2019, 566(7745): 486-489. doi:  10.1038/s41586-019-0937-5 
						
					 | 
			
| [35] | 
					 ZHANG Y, ZHANG F, XU Y G, et al. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors[J]. Small Methods, 2019, 3(2): 1900349. 
						
					 | 
			
| [36] | 
					 BHATTACHARYYA B, GUPTA A, SENGUTTUVAN T D, et al. Topological insulator based dual state photo-switch originating through bulk and surface conduction channels[J]. Physica Status Solidi (B) 
						
					 | 
			
| [37] | 
					 CULCER D, KESER A C, LI Y Q, et al. Transport in two-dimensional topological materials: recent developments in experiment and theory[J]. 2D Materials, 2020, 7(2): 022007. doi:  10.1088/2053-1583/ab6ff7 
						
					 | 
			
| [38] | 
					 BERNEVIG B A, HUGHES T L, ZHANG SH CH. Quantum spin hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806): 1757-1761. doi:  10.1126/science.1133734 
						
					 | 
			
| [39] | 
					 KÖNIG M, BUHMANN H, MOLENKAMP L W, et al. The quantum spin hall effect: theory and experiment[J]. Journal of the Physical Society of Japan, 2008, 77(3): 031007. doi:  10.1143/JPSJ.77.031007 
						
					 | 
			
| [40] | 
					 LIU CH X, HUGHES T L, QI X L, et al. Quantum spin hall effect in inverted type-Ⅱ semiconductors[J]. Physical Review Letters, 2008, 100(23): 236601. doi:  10.1103/PhysRevLett.100.236601 
						
					 | 
			
| [41] | 
					 LIU C W, WANG ZH H, QIU R L J, et al. Development of topological insulator and topological crystalline insulator nanostructures[J]. Nanotechnology, 2020, 31(19): 192001. doi:  10.1088/1361-6528/ab6dfc 
						
					 | 
			
| [42] | 
					 SWATEK P, WU Y, WANG L L, et al.. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. arXiv: 1907.09596, 2019. 
						
					 | 
			
| [43] | 
					 LI ZH, LI J H, HE K, et al.. Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials[J]. arXiv: 2003.13485, 2020. 
						
					 | 
			
| [44] | 
					 FU L. Topological crystalline insulators[J]. Physical Review Letters, 2011, 106(10): 106802. doi:  10.1103/PhysRevLett.106.106802 
						
					 | 
			
| [45] | 
					 LI Z, SHAO S, LI N, et al. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies[J]. Nano Letters, 2013, 13(11): 5443-5448. doi:  10.1021/nl4030193 
						
					 | 
			
| [46] | 
					 HSIEH T H, LIN H, LIU J W, et al. Topological crystalline insulators in the SnTe material class[J]. Nature Communications, 2012, 3(1): 982. doi:  10.1038/ncomms1969 
						
					 | 
			
| [47] | 
					 SCHOOP L M, DAI X, CAVA R J, et al. Special topic on topological semimetals-new directions[J]. APL Materials, 2020, 8(3): 030401. doi:  10.1063/5.0006015 
						
					 | 
			
| [48] | 
					 YAN M ZH, HUANG H Q, ZHANG K N, et al. Lorentz-violating type-Ⅱ Dirac fermions in transition metal dichalcogenide PtTe2[J]. Nature Communications, 2017, 8(1): 257. doi:  10.1038/s41467-017-00280-6 
						
					 | 
			
| [49] | 
					 KUSHWAHA S K, KRIZAN J W, FELDMAN B E, et al. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi[J]. APL Materials, 2015, 3(4): 041504. doi:  10.1063/1.4908158 
						
					 | 
			
| [50] | 
					 HUANG C, ZHOU B T, ZHANG H Q, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2[J]. Nature Communications, 2019, 10(1): 2217. doi:  10.1038/s41467-019-10233-w 
						
					 | 
			
| [51] | 
					 GUO J, HUANG Y, WU X SH, et al. Thickness-dependent in-plane thermal conductivity and enhanced thermoelectric performance in p-Type ZrTe5 nanoribbons[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2019, 13(3): 1800529. doi:  10.1002/pssr.201800529 
						
					 | 
			
| [52] | 
					 LV B Q, WENG H M, FU B B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031013. doi:  10.1103/PhysRevX.5.031013 
						
					 | 
			
| [53] | 
					 SUN Y, WU SH CH, YAN B H. Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP[J]. Physical Review B, 2015, 92(11): 115428. doi:  10.1103/PhysRevB.92.115428 
						
					 | 
			
| [54] | 
					 ZHANG CH, NI ZH L, ZHANG J L, et al. Ultrahigh conductivity in Weyl semimetal NbAs nanobelts[J]. Nature Materials, 2019, 18(5): 482-488. doi:  10.1038/s41563-019-0320-9 
						
					 | 
			
| [55] | 
					 SOLUYANOV A A, GRESCH D, WANG ZH J, et al. Type-Ⅱ Weyl semimetals[J]. Nature, 2015, 527(7579): 495-498. doi:  10.1038/nature15768 
						
					 | 
			
| [56] | 
					 DENG K, WAN G L, DENG P, et al. Experimental observation of topological Fermi arcs in type-Ⅱ Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12): 1105-1110. doi:  10.1038/nphys3871 
						
					 | 
			
| [57] | 
					 MA J CH, GU Q Q, LIU Y N, et al. Nonlinear photoresponse of type-Ⅱ Weyl semimetals[J]. Nature Materials, 2019, 18(5): 476-481. doi:  10.1038/s41563-019-0296-5 
						
					 | 
			
| [58] | 
					 ZHANG X, WANG J, ZHANG SH CH. Topological insulators for high-performance terahertz to infrared applications[J]. Physical Review B, 2010, 82(24): 245107. doi:  10.1103/PhysRevB.82.245107 
						
					 | 
			
| [59] | 
					 YAN Y, LIAO ZH M, KE X X, et al. Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons[J]. Nano Letters, 2014, 14(8): 4389-4394. doi:  10.1021/nl501276e 
						
					 | 
			
| [60] | 
					 SHARMA A, BHATTACHARYYA B, SRIVASTAVA A K, et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide[J]. Scientific Reports, 2016, 6(1): 19138. doi:  10.1038/srep19138 
						
					 | 
			
| [61] | 
					 LIU CH, ZHANG H B, SUN ZH, et al. Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response[J]. Journal of Materials Chemistry C, 2016, 4(24): 5648-5655. doi:  10.1039/C6TC01083K 
						
					 | 
			
| [62] | 
					 DAS B, DAS N S, SARKAR S, et al. Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector[J]. ACS Applied Materials &Interfaces, 2017, 9(27): 22788-22798. 
						
					 | 
			
| [63] | 
					 ZHENG W SH, XIE T, ZHOU Y, et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors[J]. Nature Communications, 2015, 6(1): 6972. doi:  10.1038/ncomms7972 
						
					 | 
			
| [64] | 
					 TANG W W, POLITANO A, GUO CH, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth Selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31): 1801786. doi:  10.1002/adfm.201801786 
						
					 | 
			
| [65] | 
					 KIM J, PARK S, JANG H, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3): 482-488. doi:  10.1021/acsphotonics.6b00972 
						
					 | 
			
| [66] | 
					 YANG M, HAN Q, LIU X CH, et al. Ultrahigh stability 3D TI Bi2Se3/MoO3 thin film Heterojunction infrared Photodetector at optical communication waveband[J]. Advanced Functional Materials, 2020, 30(12): 1909659. doi:  10.1002/adfm.201909659 
						
					 | 
			
| [67] | 
					 TANG Y X, JIANG T, ZHOU T, et al. Ultrafast exciton transfer in perovskite CsPbBr3 quantum dots/topological insulator Bi2Se3 film heterostructure[J]. Nanotechnology, 2019, 30(32): 325702. doi:  10.1088/1361-6528/ab166f 
						
					 | 
			
| [68] | 
					 LIANG F X, LAING L, ZHAO X Y, et al. A sensitive broadband (UV-vis-NIR) perovskite photodetector using topological insulator as electrodes[J]. Advanced Optical Materials, 2019, 7(4): 1801392. 
						
					 | 
			
| [69] | 
					 YAO J D, SHAO J M, LI S W, et al. Polarization dependent photocurrent in the Bi2Te3 topological insulator film for multifunctional photodetection[J]. Scientific Reports, 2015, 5(1): 14184. doi:  10.1038/srep14184 
						
					 | 
			
| [70] | 
					 YAO J D, ZHENG ZH Q, YANG G W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-7840. doi:  10.1039/C6TC01453D 
						
					 | 
			
| [71] | 
					 YAO J D, ZHENG ZH Q, YANG G W. All-layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe Photodetector with Bi2Te3 topological insulator electrodes[J]. Advanced Functional Materials, 2017, 27(33): 1701823. doi:  10.1002/adfm.201701823 
						
					 | 
			
| [72] | 
					 YANG M, WANG J, ZHAO Y F, et al. Three-dimensional topological insulator Bi2Te3/Organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers[J]. ACS Nano, 2018, 13(1): 755-763. 
						
					 | 
			
| [73] | 
					 YANG M, WANG J, ZHAO Y F, et al. Polarimetric three-dimensional topological insulators/organics thin film heterojunction photodetectors[J]. ACS Nano, 2019, 13(9): 10810-10817. doi:  10.1021/acsnano.9b05775 
						
					 | 
			
| [74] | 
					 SHARMA A, SENGUTTUVAN T D, OJHA V N, et al. Novel synthesis of topological insulator based nanostructures (Bi2Te3) demonstrating high performance photodetection[J]. Scientific Reports, 2019, 9(1): 3804. doi:  10.1038/s41598-019-40394-z 
						
					 | 
			
| [75] | 
					 QIAO H, YUAN J, XU Z Q, et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894. doi:  10.1021/nn506920z 
						
					 | 
			
| [76] | 
					 LIU H W, ZHU X L, SUN X X, et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3p-n heterojunctions[J]. ACS Nano, 2019, 13(11): 13573-13580. doi:  10.1021/acsnano.9b07563 
						
					 | 
			
| [77] | 
					 ZHENG K, LUO L B, ZHANG T F, et al. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film[J]. Journal of Materials Chemistry C, 2015, 3(35): 9154-9160. doi:  10.1039/C5TC01772F 
						
					 | 
			
| [78] | 
					 SUN H H, JIANG T, ZANG Y Y, et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures[J]. Nanoscale, 2017, 9(27): 9325-9332. doi:  10.1039/C7NR01715D 
						
					 | 
			
| [79] | 
					 LIU H W, LI D, MA CH, et al. Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p–n heterojunctions for high performance optoelectronics[J]. Nano Energy, 2019, 59: 66-74. doi:  10.1016/j.nanoen.2019.02.032 
						
					 | 
			
| [80] | 
					 HUANG S M, HUANG S J, YAN Y J, et al. Extremely high-performance visible light photodetector in the Sb2SeTe2 nanoflake[J]. Scientific Reports, 2017, 7(1): 45413. doi:  10.1038/srep45413 
						
					 | 
			
| [81] | 
					 AHER R, BHORDE A, NAIR S, et al. Solvothermal growth of PbBi2Se4 nano-flowers: a material for humidity sensor and photodetector applications[J]. Physica Status Solidi (A) 
						
					 | 
			
| [82] | 
					 SAFDAR M, WANG Q SH, MIRZA M, et al. Topological surface transport properties of single-crystalline SnTe nanowire[J]. Nano Letters, 2013, 13(11): 5344-5349. doi:  10.1021/nl402841x 
						
					 | 
			
| [83] | 
					 JIANG T, ZANG Y Y, SUN H H. Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy[J]. Advanced Optical Materials, 2017, 5(5): 1600727. doi:  10.1002/adom.201600727 
						
					 | 
			
| [84] | 
					 YANG J, YU W ZH, PAN ZH H, et al. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity[J]. Small, 2018, 14(37): 1802598. doi:  10.1002/smll.201802598 
						
					 | 
			
| [85] | 
					 GU S H, DING K, PAN J, et al. Self-driven, broadband and ultrafast photovoltaic detectors based on topological crystalline insulator SnTe/Si heterostructures[J]. Journal of Materials Chemistry A, 2017, 5(22): 11171-11178. doi:  10.1039/C7TA02222K 
						
					 | 
			
| [86] | 
					 ZHANG H B, MAN B Y, ZHANG Q. Topological crystalline insulator SnTe/Si vertical heterostructure photodetectors for high-performance near-infrared detection[J]. ACS Applied Materials &Interfaces, 2017, 9(16): 14067-14077. 
						
					 | 
			
| [87] | 
					 ZHANG H B, SONG Z L, LI D, et al. Near-infrared photodetection based on topological insulator P-N heterojunction of SnTe/Bi2Se3[J]. Applied Surface Science, 2020, 509: 145290. doi:  10.1016/j.apsusc.2020.145290 
						
					 | 
			
| [88] | 
					 CONTE A M, PULCI O, BECHSTEDT F. Electronic and optical properties of topological semimetal Cd3As2[J]. Scientific Reports, 2017, 7(1): 45500. doi:  10.1038/srep45500 
						
					 | 
			
| [89] | 
					 WANG Q SH, LI C ZH, GE SH F, et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2[J]. Nano Letters, 2017, 17(2): 834-841. doi:  10.1021/acs.nanolett.6b04084 
						
					 | 
			
| [90] | 
					 YAVARISHAD N, HOSSEINI T, KHEIRANDISH E, et al. Room-temperature self-powered energy photodetector based on optically induced Seebeck effect in Cd3As2[J]. Applied Physics Express, 2017, 10(5): 052201. doi:  10.7567/APEX.10.052201 
						
					 | 
			
| [91] | 
					 HUANG Z H, JIANG Y D, HAN Q, et al. High responsivity and fast UV-Vis-SWIR photodetector based on Cd3As2/MoS2 heterojunction[J]. Nanotechnology, 2019, 31(6): 064001. 
						
					 | 
			
| [92] | 
					 WU Y F, ZHANG L, LI C ZH, et al. Dirac semimetal heterostructures: 3D Cd3As2 on 2D Graphene[J]. Advanced Materials, 2018, 30(34): 1707547. doi:  10.1002/adma.201707547 
						
					 | 
			
| [93] | 
					 YANG M, WANG J, HAN J Y, et al. Enhanced performance of wideband room temperature photodetector based on Cd3As2 thin film/Pentacene heterojunction[J]. ACS Photonics, 2018, 5(8): 3438-3445. doi:  10.1021/acsphotonics.8b00727 
						
					 | 
			
| [94] | 
					 YANG M, WANG J, YANG Y K, et al. Ultraviolet to long-wave infrared photodetectors based on a three- dimensional Dirac semimetal/organic thin film heterojunction[J]. The Journal of Physical Chemistry Letters, 2019, 10(14): 3914-3921. doi:  10.1021/acs.jpclett.9b01619 
						
					 | 
			
| [95] | 
					 LÉONARD F, YU W L, COLLINS K C, et al. Strong photothermoelectric response and contact reactivity of the Dirac semimetal ZrTe5[J]. ACS Applied Materials &Interfaces, 2017, 9(42): 37041-37047. 
						
					 | 
			
| [96] | 
					 YU X CH, YU P, WU D, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor[J]. Nature Communications, 2018, 9(1): 1545. doi:  10.1038/s41467-018-03935-0 
						
					 | 
			
| [97] | 
					 XU H, GUO CH, ZHANG J ZH, et al. PtTe2-based type-Ⅱ dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection[J]. Small, 2019, 15(52): 1903362. doi:  10.1002/smll.201903362 
						
					 | 
			
| [98] | 
					 CHI SH M, LI ZH L, XIE Y, et al. A wide-range photosensitive Weyl semimetal single crystal-TaAs[J]. Advanced Materials, 2018, 30(43): 1801372-1801379. doi:  10.1002/adma.201801372 
						
					 | 
			
| [99] | 
					 OSTERHOUDT G B, DIEBEL L K, GRAY M J, et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal[J]. Nature Materials, 2019, 18(5): 471-475. doi:  10.1038/s41563-019-0297-4 
						
					 | 
			
| [100] | 
					 LAI J W, LIU X, MA J CH, et al. Anisotropic broadband photoresponse of layered type-Ⅱ Weyl semimetal MoTe2[J]. Advanced Materials, 2018, 30(22): 1707152-1707159. doi:  10.1002/adma.201707152 
						
					 | 
			
| [101] | 
					 WANG Q SH, ZHENG J CH, HE Y, et al. Robust edge photocurrent response on layered type Ⅱ Weyl semimetal WTe2[J]. Nature Communications, 2019, 10(1): 5736. doi:  10.1038/s41467-019-13713-1 
						
					 | 
			
| [102] | 
					 ZHOU W, CHEN J ZH, GAO H, et al. Anomalous and polarization-sensitive photoresponse of Td-WTe2 from visible to infrared light[J]. Advanced Materials, 2019, 31(5): 1804629-1804636. doi:  10.1002/adma.201804629 
						
					 | 
			
| [103] | 
					 LAI J W, LIU Y N, MA J CH, et al. Broadband anisotropic photoresponse of the “hydrogen atom” version type-Ⅱ Weyl semimetal candidate TaIrTe[J]. ACS Nano, 2018, 12(4): 4055-4061. doi:  10.1021/acsnano.8b01897 
						
					 | 
			
| [104] | 
					 LU ZH J, XU Y, YU Y Q, et al. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition[J]. Advanced Functional Materials, 2020, 30(9): 1907951. doi:  10.1002/adfm.201907951 
						
					 | 
			
| [105] | 
					 CHEN W J, LIANG R R, ZHANG SH Q, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure[J]. Nano Research, 2020, 13(1): 127-132. doi:  10.1007/s12274-019-2583-5 
						
					 | 
			
| [106] | 
					 YU W ZH, LI SH J, ZHANG Y P, et al. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility[J]. Small, 2017, 13(24): 1700268. doi:  10.1002/smll.201700268 
						
					 | 
			
| [107] | 
					 LIU Y J, LIU CH, WANG X M, et al. Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe2[J]. Scientific Reports, 2018, 8(1): 12840. doi:  10.1038/s41598-018-29717-8 
						
					 | 
			
| [108] | 
					 LU M Y, CHANG Y T, CHEN H J. Efficient self-driven photodetectors featuring a mixed-dimensional van der waals heterojunction formed from a CdS nanowire and a MoTe2 flake[J]. Small, 2018, 14(40): 1802302. doi:  10.1002/smll.201802302 
						
					 | 
			
| [109] | 
					 MAKINO K, KUROMIYA S, TAKANO K, et al. THz pulse detection by multilayered GeTe/Sb2Te3[J]. ACS Applied Materials &Interfaces, 2016, 8(47): 32408-32413. 
						
					 | 
			
| [110] | 
					 WANG X T, CUI Y, LI T, et al. Recent advances in the functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(3): 1801274. doi:  10.1002/adom.201801274 
						
					 | 
			
| [111] | 
					 ROGALSKI A, KOPYTKO M, MARTYNIUK P. Two-dimensional infrared and terahertz detectors: outlook and status[J]. Applied Physics Reviews, 2019, 6(2): 021316. doi:  10.1063/1.5088578 
						
					 | 
			
| [112] | 
					 杨旗, 申钧, 魏兴战, 等. 基于石墨烯的红外探测机理与器件结构研究进展[J]. 红外与激光工程,2020,49(1):0103003. 
					YANG Q, SHEN J, WEI X ZH, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103003. (in Chinese) 
						
					 | 
			
| [113] | 
					 YE L, LI H, CHEN Z F, et al. Near-infrared photodetector based on MoS2/Black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4): 692-699. doi:  10.1021/acsphotonics.6b00079 
						
					 | 
			
| [114] | 
					 HUANG ZH ZH, ZHANG T F, LIU J K, et al. Amorphous MoS2 photodetector with ultra-broadband response[J]. ACS Applied Electronic Materials, 2019, 1(7): 1314-1321. doi:  10.1021/acsaelm.9b00247 
						
					 | 
			
| [115] | 
					 ZHU W K, YAN F G, WEI X, et al. Broadband and fast photodetectors based on multilayer p-MoTe2/n-WS2 heterojunction with graphene electrodes[J]. Advanced Materials Letters, 2019, 10(5): 329-333. doi:  10.5185/amlett.2019.2281 
						
					 | 
			
| [116] | 
					 TSAI T H, LIANG ZH Y, LIN Y CH, et al. Photogating WS2 photodetectors using embedded WSe2 charge puddles[J]. ACS Nano, 2020, 14(4): 4559-4566. doi:  10.1021/acsnano.0c00098 
						
					 | 
			
| [117] | 
					 SUN J CH, WANG Y Y, GUO SH Q, et al. Lateral 2D WSe2 p–n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics[J]. Advanced Materials, 2020, 32(9): 1906499. doi:  10.1002/adma.201906499 
						
					 | 
			
| [118] | 
					 ZHENG ZH Q, ZHANG T M, YAO J D, et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices[J]. Nanotechnology, 2016, 27(22): 225501. doi:  10.1088/0957-4484/27/22/225501 
						
					 | 
			
| [119] | 
					 DU Y P, BO X Y, WANG D, et al. Emergence of topological nodal lines and type-Ⅱ Weyl nodes in the strong spin-orbit coupling system InNbX2(X=S, Se)[J]. Physical Review B, 2017, 96(23): 235152. doi:  10.1103/PhysRevB.96.235152 
						
					 | 
			
| [120] | 
					 YUAN Y F, WANG W K, ZHOU Y H, et al. Pressure-induced superconductivity in topological semimetal candidate TaTe4[J]. Advanced Electronic Materials, 2020, 6(3): 1901260. doi:  10.1002/aelm.201901260 
						
					 |