| Citation: | SHI Xiao-gang, XUE Zheng-hui, LI Hui-hui, WANG Bing-jie, LI Shuang-long. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. doi: 10.37188/CO.2021-0032 | 
	                | [1] | 
					 CARMIGNIANI J, FURHT B, ANISETTI M, et al. Augmented reality technologies, systems and applications[J]. Multimedia Tools and Applications, 2011, 51(1): 341-377. doi:  10.1007/s11042-010-0660-6 
						
					 | 
			
| [2] | 
					 何泽浩, 隋晓萌, 赵燕, 等. 基于全息光学的虚拟现实与增强现实技术进展[J]. 科技导报,2018,36(9):8-17. 
					HE Z H, SUI X M, ZHAO Y, et al. The development trend of virtual reality and augmented reality technology based on holographic optics[J]. Science &Technology Review, 2018, 36(9): 8-17. (in Chinese) 
						
					 | 
			
| [3] | 
					 范丽亚, 马介渊, 张克发, 等. 增强现实硬件产业的发展及展望[J]. 科技导报,2019,37(15):114-124. 
					FAN L Y, MA J Y, ZHANG K F, et al. The development status and prospect of augmented reality hardware industry[J]. Science &Technology Review, 2019, 37(15): 114-124. (in Chinese) 
						
					 | 
			
| [4] | 
					 CHANG CH L, BANG K, WETZSTEIN G, et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective[J]. Optica, 2020, 7(11): 1563-1578. doi:  10.1364/OPTICA.406004 
						
					 | 
			
| [5] | 
					 WHEELWRIGHT B, SULAI Y, GENG Y, et al. Field of view: not just a number[J]. Proceedings of SPIE, 2018, 10676: 1067604. 
						
					 | 
			
| [6] | 
					 ZHAN T, YIN K, XIONG J H, et al. Augmented reality and virtual reality displays: perspectives and challenges[J]. iScience, 2020, 23(8): 101397. doi:  10.1016/j.isci.2020.101397 
						
					 | 
			
| [7] | 
					 CURCIO C A, SLOAN K R, KALINA R E, et al. Human photoreceptor topography[J]. Journal of Comparative Neurology, 1990, 292(4): 497-523. doi:  10.1002/cne.902920402 
						
					 | 
			
| [8] | 
					 DOBROWOLSKI J A, SULLIVAN B T, BAJCAR R C. Optical interference, contrast-enhanced electroluminescent device[J]. Applied Optics, 1992, 31(28): 5988-5996. doi:  10.1364/AO.31.005988 
						
					 | 
			
| [9] | 
					 CHEN H W, TAN G J, WU S T. Ambient contrast ratio of LCDs and OLED displays[J]. Optics Express, 2017, 25(26): 33643-33656. doi:  10.1364/OE.25.033643 
						
					 | 
			
| [10] | 
					 LEE Y H, ZHAN T, WU S T. Prospects and challenges in augmented reality displays[J]. Virtual Reality &Intelligent Hardware, 2019, 1(1): 10-20. 
						
					 | 
			
| [11] | 
					 SCHOWENGERDT B T, LIN D M, ST HILAIRE P. Multi-layer diffractive eyepiece: US, 2018052277A1[P]. 2018-02-22. 
						
					 | 
			
| [12] | 
					 HOFFMAN D M, GIRSHICK A R, AKELEY K, et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue[J]. Journal of Vision, 2008, 8(3): 33. doi:  10.1167/8.3.33 
						
					 | 
			
| [13] | 
					 KRAMIDA G. Resolving the vergence-accommodation conflict in head-mounted displays[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(7): 1912-1931. doi:  10.1109/TVCG.2015.2473855 
						
					 | 
			
| [14] | 
					 ZHAN T, XIONG J H, ZOU J Y, et al. Multifocal displays: review and prospect[J]. PhotoniX, 2020, 1: 10. doi:  10.1186/s43074-020-00010-0 
						
					 | 
			
| [15] | 
					 TAY S, BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698. doi:  10.1038/nature06596 
						
					 | 
			
| [16] | 
					 YARAŞ F, KANG H, ONURAL L. State of the art in holographic displays: a survey[J]. Journal of Display Technology, 2010, 6(10): 443-454. doi:  10.1109/JDT.2010.2045734 
						
					 | 
			
| [17] | 
					 WETZSTEIN G, LANMAN D, HIRSCH M, et al. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting[J]. ACM Transactions on Graphics, 2012, 31(4): 80. 
						
					 | 
			
| [18] | 
					 YUUKI A, ITOGA K, SATAKE T. A new Maxwellian view display for trouble-free accommodation[J]. Journal of the Society for Information Display, 2012, 20(10): 581-588. doi:  10.1002/jsid.122 
						
					 | 
			
| [19] | 
					 STEVENS R E, RHODES D P, HASNAIN A, et al. Varifocal technologies providing prescription and VAC mitigation in HMDs using Alvarez lenses[J]. Proceedings of SPIE, 2018, 10676: 106760J. 
						
					 | 
			
| [20] | 
					 DUNN D, TIPPETS C, TORELL K, et al. Wide field of view varifocal near-eye display using see-through deformable membrane mirrors[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1322-1331. doi:  10.1109/TVCG.2017.2657058 
						
					 | 
			
| [21] | 
					 刘澍鑫, 李燕, 苏翼凯. 基于液晶散射膜的多平面增强现实显示[J]. 液晶与显示,2020,35(7):725-732. 
					LIU SH X, LI Y, SU Y K. Review on multi-plane augmented reality display based on liquid crystal scattering films[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 725-732. (in Chinese) 
						
					 | 
			
| [22] | 
					 LIU SH, HUA H. A systematic method for designing depth-fused multi-focal plane three-dimensional displays[J]. Optics Express, 2010, 18(11): 11562-11573. doi:  10.1364/OE.18.011562 
						
					 | 
			
| [23] | 
					 ZHAN T, LEE Y H, WU S T. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses[J]. Optics Express, 2018, 26(4): 4863-4872. doi:  10.1364/OE.26.004863 
						
					 | 
			
| [24] | 
					 LIU SH X, LI Y, ZHOU P CH, et al. Full-color multi-plane optical see-through head‐mounted display for augmented reality applications[J]. Journal of the Society for Information Display, 2018, 26(12): 687-693. doi:  10.1002/jsid.739 
						
					 | 
			
| [25] | 
					 HUANG Y G, LIAO E, CHEN R, et al. Liquid-crystal-on-silicon for augmented reality displays[J]. Applied Sciences, 2018, 8(12): 2366. doi:  10.3390/app8122366 
						
					 | 
			
| [26] | 
					 KIM J, KOMANDURI R K, LAWLER K F, et al. Efficient and monolithic polarization conversion system based on a polarization grating[J]. Applied Optics, 2012, 51(20): 4852-4857. doi:  10.1364/AO.51.004852 
						
					 | 
			
| [27] | 
					 DU T, FAN F, TAM A M W, et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer[J]. Advanced Materials, 2015, 27(44): 7191-7195. doi:  10.1002/adma.201502395 
						
					 | 
			
| [28] | 
					 WANG CH, HSU R. 18‐4: Invited Paper: Digital modulation on micro display and spatial light modulator[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 238-241. doi:  10.1002/sdtp.11678 
						
					 | 
			
| [29] | 
					 KANAZAWA M, HAMADA K, KONDOH I, et al. An ultrahigh-definition display using the pixel-offset method[J]. Journal of the Society for Information Display, 2004, 12(1): 93-103. doi:  10.1889/1.1824245 
						
					 | 
			
| [30] | 
					 STERLING R. JVC D-ILA high resolution, high contrast projectors and applications[C]. Proceedings of the 2008 Workshop on Immersive Projection Technologies/Emerging Display Technologiges, ACM, 2008: 1-6. 
						
					 | 
			
| [31] | 
					 HUANG Y P, LIN F CH, SHIEH H P D. Eco-displays: the color LCD's without color filters and polarizers[J]. Journal of Display Technology, 2011, 7(12): 630-632. doi:  10.1109/JDT.2011.2166056 
						
					 | 
			
| [32] | 
					 LEE Y H, ZHAN T, WU S T. Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase detector[J]. Optics Letters, 2017, 42(22): 4732-4735. 
						
					 | 
			
| [33] | 
					 PETTITT G, FERRI J, THOMPSON J. 47.1: invited paper: practical application of TI DLP® technology in the next generation head-up display system[J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 700-703. doi:  10.1002/sdtp.10269 
						
					 | 
			
| [34] | 
					 FIRTH M. Turning automotive windows into the Ultimate HMIs[J]. Information Display, 2020, 36(4): 16-20. doi:  10.1002/msid.1129 
						
					 | 
			
| [35] | 
					 MOTOYAMA Y, SUGIYAMA K, TANAKA H, et al. High‐efficiency OLED microdisplay with microlens array[J]. Journal of the Society for Information Display, 2019, 27(6): 354-360. doi:  10.1002/jsid.784 
						
					 | 
			
| [36] | 
					 GHOSH A, DONOGHUE E P, KHAYRULLIN I, et al. 18-1: invited paper: ultra-high-brightness 2K x 2K Full-color OLED microdisplay using direct patterning of OLED emitters[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 226-229. doi:  10.1002/sdtp.11674 
						
					 | 
			
| [37] | 
					 LIN J Y, JIANG H X. Development of microLED[J]. Applied Physics Letters, 2020, 116(10): 100502. doi:  10.1063/1.5145201 
						
					 | 
			
| [38] | 
					 HUANG Y, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives[J]. Light:Science &Applications, 2020, 9(1): 105. 
						
					 | 
			
| [39] | 
					 韩洪松, 齐爱想, 刘俊国, 等. Micro-LED在机载上的应用[J]. 液晶与显示,2021,36(3):439-447. doi:  10.37188/CJLCD.2020-0096 
					HAN H S, QI A X, LIU J G, et al. Application of Micro-LED technology in airborne display[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 439-447. (in Chinese) doi:  10.37188/CJLCD.2020-0096 
						
					 | 
			
| [40] | 
					 QUESNEL E, LAGRANGE A, VIGIER M, et al. Dimensioning a full color LED microdisplay for augmented reality headset in a very bright environment[J]. Journal of the Society for Information Display, 2021, 29(1): 3-16. doi:  10.1002/jsid.884 
						
					 | 
			
| [41] | 
					 郝斌, 赵文武, 郁建元, 等. 荧光粉Ba5-3x/2B4O11:xEu3+的制备及发光性能[J]. 应用化学,2019,36(5):548-553. doi:  10.11944/j.issn.1000-0518.2019.05.180276 
					HAO B, ZHAO W W, YU J Y, et al. Preparation and luminescence property of Ba5-3x/2B4O11∶xEu3+ phosphor[J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 548-553. (in Chinese) doi:  10.11944/j.issn.1000-0518.2019.05.180276 
						
					 | 
			
| [42] | 
					 刘伟强, 崔荣朕, 武瑞霞, 等. 蓝色延迟荧光材料及器件的研究进展[J]. 应用化学,2019,36(1):1-9. doi:  10.11944/j.issn.1000-0518.2019.01.180071 
					LIU W Q, CUI R ZH, WU R X, et al. Recent progress on blue delayed fluorescent materials and devices[J]. Chinese Journal of Applied Chemistry, 2019, 36(1): 1-9. (in Chinese) doi:  10.11944/j.issn.1000-0518.2019.01.180071 
						
					 | 
			
| [43] | 
					 黄国斌, 骆登峰, 张茂升. 多色高发光效率CsPbX3(X=Cl, Br, I)钙钛矿量子点的制备及其在发光二极管中的应用[J]. 应用化学,2019,36(8):932-938. doi:  10.11944/j.issn.1000-0518.2019.08.190016 
					HUANG G B, LUO D F, ZHANG M SH. Preparation of CsPbX3(X=Cl, Br, I) perovskite quantum dots with multicolor and high luminescence efficiency and its application in light emitting diode devices[J]. Chinese Journal of Applied Chemistry, 2019, 36(8): 932-938. (in Chinese) doi:  10.11944/j.issn.1000-0518.2019.08.190016 
						
					 | 
			
| [44] | 
					 ALEXANDER S, BAILEY M, MORRISON V R, et al.. Systems, devices, and methods for eyebox expansion in wearable heads-up displays: US, 9989764[P]. 2018-06-05. 
						
					 | 
			
| [45] | 
					 HAAS G. 40-2: invited paper: microdisplays for augmented and virtual reality[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 506-509. doi:  10.1002/sdtp.12445 
						
					 | 
			
| [46] | 
					 CADO H, MOLITON R. Polarization splitter, method of manufacturing same and ophthalmic lens incorporating projection inserts containing it: US, 20040136082[P]. 2004-07-15. 
						
					 | 
			
| [47] | 
					 MARTINEZ M A, SAEEDI E, AMIRPARVIZ B. Head-mounted display including integrated projector: US, 9128285[P]. 2015-09-08. 
						
					 | 
			
| [48] | 
					 WANG J H, LIANG Y CH, XU M. Design of a see-through head-mounted display with a freeform surface[J]. Journal of the Optical Society of Korea, 2015, 19(6): 614-618. doi:  10.3807/JOSK.2015.19.6.614 
						
					 | 
			
| [49] | 
					 TAKAHASHI K. Head or face mounted image display apparatus: US, 5701202[P]. 1997-12-23. 
						
					 | 
			
| [50] | 
					 AMITAI Y. Substrate-guided optical device utilizing thin transparent layer: US, 7724443[P]. 2010-05-25. 
						
					 | 
			
| [51] | 
					 CHENG D W, WANG Y T, XU CH, et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics[J]. Optics Express, 2014, 22(17): 20705-20719. doi:  10.1364/OE.22.020705 
						
					 | 
			
| [52] | 
					 GU L, CHENG D W, WANG Q W, et al. Design of a two-dimensional stray-light-free geometrical waveguide head-up display[J]. Applied Optics, 2018, 57(31): 9246-9256. doi:  10.1364/AO.57.009246 
						
					 | 
			
| [53] | 
					 KRESS B C. Optical waveguide combiners for AR headsets: features and limitations[J]. Proceedings of SPIE, 2019, 11062: 110620J. 
						
					 | 
			
| [54] | 
					 刘明欢, 付秀华, 王菲, 等. 增强现实显示衍射光波导的设计[J]. 液晶与显示,2021,36(3):389-397. doi:  10.37188/CJLCD.2020-0214 
					LIU M H, FU X H, WANG F, et al. Design of augmented reality display diffraction optical waveguide[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 389-397. (in Chinese) doi:  10.37188/CJLCD.2020-0214 
						
					 | 
			
| [55] | 
					 MUKAWA H, AKUTSU K, MATSUMURA I, et al. A full-color eyewear display using planar waveguides with reflection volume holograms[J]. Journal of the Society for Information Display, 2009, 17(3): 185-193. doi:  10.1889/JSID17.3.185 
						
					 | 
			
| [56] | 
					 KRESS B C, CUMMINGS W J. 11-1: invited paper: towards the ultimate mixed reality experience: hololens display architecture choices[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 127-131. doi:  10.1002/sdtp.11586 
						
					 | 
			
| [57] | 
					 SCHOWENGERDT B T, LIN D M, ST HILAIRE P. Multi-layer diffractive eyepiece: US, 20200284967[P]. 2020-09-10. 
						
					 | 
			
| [58] | 
					 GLEESON M R, SHERIDAN J T. A review of the modelling of free-radical photopolymerization in the formation of holographic gratings[J]. Journal of Optics A:Pure and Applied Optics, 2009, 11(2): 024008. doi:  10.1088/1464-4258/11/2/024008 
						
					 | 
			
| [59] | 
					 BRUDER F K, FÄCKE T, HAGEN R, et al. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film[J]. Proceedings of SPIE, 2015, 9626: 96260T. 
						
					 | 
			
| [60] | 
					 YEOM H J, KIM H J, KIM S B, et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation[J]. Optics Express, 2015, 23(25): 32025-32034. doi:  10.1364/OE.23.032025 
						
					 | 
			
| [61] | 
					 LIN W K, MATOBA O, LIN B S, et al. Astigmatism correction and quality optimization of computer-generated holograms for holographic waveguide displays[J]. Optics Express, 2020, 28(4): 5519-5527. doi:  10.1364/OE.381193 
						
					 | 
			
| [62] | 
					 MAIMONE A, GEORGIOU A, KOLLIN J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 2017, 36(4): 85. 
						
					 | 
			
| [63] | 
					 SUTHERLAND R L, TONDIGLIA V P, NATARAJAN L V, et al. Electrically switchable volume gratings in polymer‐dispersed liquid crystals[J]. Applied Physics Letters, 1994, 64(9): 1074-1076. doi:  10.1063/1.110936 
						
					 | 
			
| [64] | 
					 FENG X Y, LU L, YAROSHCHUK O, et al. Closer look at transmissive polarization volume holograms: geometry, physics, and experimental validation[J]. Applied Optics, 2021, 60(3): 580-592. doi:  10.1364/AO.412589 
						
					 | 
			
| [65] | 
					 NYS I. Patterned surface alignment to create complex three-dimensional nematic and chiral nematic liquid crystal structures[J]. Liquid Crystals Today, 2020, 29(4): 65-83. doi:  10.1080/1358314X.2020.1886780 
						
					 | 
			
| [66] | 
					 WENG Y SH, XU D M, ZHANG Y N, et al. Polarization volume grating with high efficiency and large diffraction angle[J]. Optics Express, 2016, 24(16): 17746-17759. doi:  10.1364/OE.24.017746 
						
					 | 
			
| [67] | 
					 LEE Y H, YIN K, WU S T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays[J]. Optics Express, 2017, 25(22): 27008-27014. doi:  10.1364/OE.25.027008 
						
					 | 
			
| [68] | 
					 LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities[J]. Optical Data Processing and Storage, 2017, 3(1): 79-88. 
						
					 | 
			
| [69] | 
					 SAKHNO O, GRITSAI Y, SAHM H, et al. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer[J]. Applied Physics B, 2018, 124(3): 52. doi:  10.1007/s00340-018-6920-2 
						
					 | 
			
| [70] | 
					 LEE Y H, TAN G J, YIN K, et al. Compact see-through near-eye display with depth adaption[J]. Journal of the Society for Information Display, 2018, 26(2): 64-70. doi:  10.1002/jsid.635 
						
					 |