| Citation: | FANG Xiao-min, JIANG Xiao-wei, WU Hua. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075 | 
	                | [1] | 
					 ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese) 
						
					 | 
			
| [2] | 
					 DU K K, LI Q, LV Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light,Science &Applications, 2017, 6(1): e16194. 
						
					 | 
			
| [3] | 
					 HE X Y, LIU F, LIN F T, et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J]. Optics Letters, 2021, 46(3): 472-475. doi:  10.1364/OL.415187 
						
					 | 
			
| [4] | 
					 HE X Y, LIU F, LIN F T, et al. Tunable terahertz Dirac semimetal metamaterials[J]. Journal of Physics D:Applied Physics, 2021, 54(3): 235103. 
						
					 | 
			
| [5] | 
					 MOU N L, LIU X L, WEI T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374-5379. doi:  10.1039/C9NR07602F 
						
					 | 
			
| [6] | 
					 LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi:  10.1103/PhysRevLett.100.207402 
						
					 | 
			
| [7] | 
					 TUAN T S, HOA N T Q. Numerical study of an efficient broadband metamaterial absorber in visible light region[J]. IEEE Photonics Journal, 2019, 11(3): 4600810. 
						
					 | 
			
| [8] | 
					 PENG J, HE X Y, SHI CH Y Y, et al. Investigation of graphene supported terahertz elliptical metamaterials[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2020, 124: 114309. doi:  10.1016/j.physe.2020.114309 
						
					 | 
			
| [9] | 
					 YAO G, LING F R, YUE J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 2016, 24(2): 1518-1527. doi:  10.1364/OE.24.001518 
						
					 | 
			
| [10] | 
					 LIU N, MESCH M, WEISS T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348. doi:  10.1021/nl9041033 
						
					 | 
			
| [11] | 
					 GREFFET J J, CARMINATI R, JOULAIN K, et al. Coherent emission of light by thermal sources[J]. Nature, 2002, 416(6876): 61-64. doi:  10.1038/416061a 
						
					 | 
			
| [12] | 
					 ZHU ZH H, EVANS P G, HAGLUND R F JR, et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials[J]. Nano Letters, 2017, 17(8): 4881-4885. doi:  10.1021/acs.nanolett.7b01767 
						
					 | 
			
| [13] | 
					 ANKER J N, HALL W P, LYANDRES O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453. doi:  10.1038/nmat2162 
						
					 | 
			
| [14] | 
					 MENG L J, ZHAO D, RUAN ZH C, et al. Optimized grating as an ultra-narrow band absorber or plasmonic sensor[J]. Optics Letters, 2014, 39(5): 1137-1140. doi:  10.1364/OL.39.001137 
						
					 | 
			
| [15] | 
					 FENG A S, YU Z J, SUN X K. Ultranarrow-band metagrating absorbers for sensing and modulation[J]. Optics Express, 2018, 26(22): 28197-28205. doi:  10.1364/OE.26.028197 
						
					 | 
			
| [16] | 
					 KANG S, QIAN ZH Y, RAJARAM V, et al. Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy[J]. Advanced Optical Materials, 2019, 7(2): 1801236. doi:  10.1002/adom.201801236 
						
					 | 
			
| [17] | 
					 RRN ZH B, SUN Y H, LIN Z H, et al. Ultra-narrow band perfect metamaterial absorber based on dielectric-metal periodic configuration[J]. Optical Materials, 2019, 89: 308-315. doi:  10.1016/j.optmat.2019.01.020 
						
					 | 
			
| [18] | 
					 LIAO Y L, ZHAO Y. Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications[J]. Scientific Reports, 2020, 10(1): 1480. doi:  10.1038/s41598-020-58456-y 
						
					 | 
			
| [19] | 
					 XU Z CH, GAO R M, DING CH F, et al. Multiband metamaterial absorber at terahertz frequencies[J]. Chinese Physics Letters, 2014, 31(5): 054205. doi:  10.1088/0256-307X/31/5/054205 
						
					 | 
			
| [20] | 
					 HU F R, WANG L, QUAN B G, et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D:Applied Physics, 2013, 46(19): 195103. doi:  10.1088/0022-3727/46/19/195103 
						
					 | 
			
| [21] | 
					 DING F, DAI J, CHEN Y T, et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 2016, 6(1): 39445. doi:  10.1038/srep39445 
						
					 | 
			
| [22] | 
					 JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379. doi:  10.1103/PhysRevB.6.4370 
						
					 | 
			
| [23] | 
					 LI W CH, ZHOU X, YING Y, et al. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array[J]. AIP Advances, 2015, 5(6): 067151. doi:  10.1063/1.4923194 
						
					 | 
			
| [24] | 
					 WANG Q. Study on the mechanism and characteristics of guided-mode resonance subwavelength device[D]. Shanghai: University of Shanghai for Science and Technology, 2012: 44-46. (in Chinese) 
						
					 | 
			
| [25] | 
					 ZENG ZH W, LIU H T, ZHANG S W. Design of extraordinary-optical-transimission refractive-index sensor of subwavelength metallic slit array based on a Fabry-Perot model[J]. Acta Physica Sinica, 2012, 61(20): 200701. (in Chinese) doi:  10.7498/aps.61.200701 
						
					 | 
			
| [26] | 
					 LIU W X. Design and characterization of controllable linewidth guided-mode resonance filter[D]. Nanchang: Nanchang University, 2011: 18-22. (in Chinese) 
						
					 | 
			
| [27] | 
					 JIANG X W, WU H. Metamaterial absorber with controllable absorption wavelength and absorption efficiency[J]. Acta Physica Sinica, 2021, 70(2): 027804. (in Chinese) doi:  10.7498/aps.70.20201173 
						
					 |