| Citation: | CAO Wen-jing, SUN Li-ze-tong, GUO Fu-zhou, SONG Jian-tong, LIU Xiao, CHEN Zhi-hui, YANG Yi-biao, SUN Fei. Enhancing the fluorescence emission by flexible metal-dielectric-metal structures[J]. Chinese Optics, 2022, 15(1): 144-160. doi: 10.37188/CO.2021-0084 | 
	                | [1] | 
					 WANG Z B, HELANDER M G, QIU J, et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic[J]. Nature Photonics, 2011, 5(12): 753-757. doi:  10.1038/nphoton.2011.259 
						
					 | 
			
| [2] | 
					 KIM W, KWON S, LEE S M, et al. Soft fabric-based flexible organic light-emitting diodes[J]. Organic Electronics, 2013, 14(11): 3007-3013. doi:  10.1016/j.orgel.2013.09.001 
						
					 | 
			
| [3] | 
					 HUANG W B, ZHANG X J, YANG T CH, et al. A mechanically bendable and conformally attachable polymer membrane microlaser array enabled by digital interference lithography[J]. Nanoscale, 2020, 12(12): 6736-6743. doi:  10.1039/C9NR10970F 
						
					 | 
			
| [4] | 
					 CHOUDHURY S D, BADUGU R, RAY K, et al. Steering fluorescence emission with metal-dielectric-metal structures of Au, Ag, and Al[J]. The Journal of Physical Chemistry C, 2013, 117(30): 15798-15807. doi:  10.1021/jp4051066 
						
					 | 
			
| [5] | 
					 GRANADOS J A O, THANGARASU P, SINGH N, et al. Tetracycline and its quantum dots for recognition of Al3+ and application in milk developing cells bio-imaging [J]. Food Chemistry, 2019, 278: 523-532. doi:  10.1016/j.foodchem.2018.11.086 
						
					 | 
			
| [6] | 
					 CHEN W L, LONG K D, YU H, et al. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy [J]. Analyst, 2014, 139(22): 5954-5963. doi:  10.1039/C4AN01508H 
						
					 | 
			
| [7] | 
					 MCHUGH K J, JING L H, BEHRENS A M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents[J]. Advanced Materials, 2018, 30(18): 1706356. doi:  10.1002/adma.201706356 
						
					 | 
			
| [8] | 
					 BHASIKUTTAN A C, MOHANTY J, NAU W M, et al. Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly[J]. Angewandte Chemie International Edition, 2007, 46(22): 4120-4122. doi:  10.1002/anie.200604757 
						
					 | 
			
| [9] | 
					 NANDIMATH M, BHAJANTRI R F, NAIK J. Spectroscopic and color chromaticity analysis of rhodamine 6G dye-doped PVA polymer composites for color tuning applications[J]. Polymer Bulletin, 2021, 78(8): 4569-4592. doi:  10.1007/s00289-020-03332-y 
						
					 | 
			
| [10] | 
					 NGO Q M, HO Y L D, PUGH J R, et al. Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays[J]. Current Applied Physics, 2018, 18(7): 793-798. doi:  10.1016/j.cap.2018.04.007 
						
					 | 
			
| [11] | 
					 LI D Y, ZHOU D L, XU W, et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors[J]. Advanced Functional Materials, 2018, 28(41): 1804429. doi:  10.1002/adfm.201804429 
						
					 | 
			
| [12] | 
					 YAN Y ZH, ZENG Y, WU Y, et al. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 2014, 22(19): 23552-23564. doi:  10.1364/OE.22.023552 
						
					 | 
			
| [13] | 
					 JIANG J J, XIE Y B, LIU ZH Y, et al. Amplified spontaneous emission via the coupling between Fabry-Perot cavity and surface plasmon polariton modes[J]. Optics Letters, 2014, 39(8): 2378-2381. doi:  10.1364/OL.39.002378 
						
					 | 
			
| [14] | 
					 REN Y, LU Y H, ZANG T Y, et al. Fluorescence emission mediated by metal-dielectric-metal fishnet metasurface: spatially selective excitation and double enhancement[J]. Chinese Journal of Chemical Physics, 2019, 32(3): 349-356. doi:  10.1063/1674-0068/cjcp1807182 
						
					 | 
			
| [15] | 
					 CHOUDHURY S D, BADUGU R, NOWACZYK K, et al. Tuning fluorescence direction with plasmonic metal–dielectric–metal substrates[J]. The Journal of Physical Chemistry Letters, 2013, 4(1): 227-232. doi:  10.1021/jz301867b 
						
					 | 
			
| [16] | 
					 JUNG B Y, KIM N Y, LEE C H, et al. Optical properties of Fabry-Perot microcavity with organic light emitting materials[J]. Current Applied Physics, 2001, 1(2-3): 175-181. doi:  10.1016/S1567-1739(01)00006-2 
						
					 | 
			
| [17] | 
					 UDDIN S Z, TANVIR M R, TALUKDER M A. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection[J]. Journal of Applied Physics, 2016, 119(20): 204701. doi:  10.1063/1.4952576 
						
					 | 
			
| [18] | 
					 CHOUDHURY S D, BADUGU R, RAY K, et al. Directional emission from metal-dielectric-metal structures: effect of mixed metal layers, dye location, and dielectric thickness[J]. The Journal of Physical Chemistry C, 2015, 119(6): 3302-3311. doi:  10.1021/jp512174w 
						
					 | 
			
| [19] | 
					 PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1985.. 
						
					 | 
			
| [20] | 
					 LU G W, ZHANG T Y, LI W Q, et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32): 15822-15828. doi:  10.1021/jp203317d 
						
					 | 
			
| [21] | 
					 CHOU R Y, LU G W, SHEN H M, et al. A hybrid nanoantenna for highly enhanced directional spontaneous emission[J]. Journal of Applied Physics, 2014, 115(24): 244310. doi:  10.1063/1.4885422 
						
					 | 
			
| [22] | 
					 GRYCZYNSKI I, MALICKA J, NOWACZYK K, et al. Effects of sample thickness on the optical properties of surface plasmon-coupled emission[J]. The Journal of Physical Chemistry B, 2004, 108(32): 12073-12083. doi:  10.1021/jp0312619 
						
					 |