| Citation: | HU Jin-gao-wa, ZHAO Shang-nan, WANG Ling-jie, YE Hao-kun, ZHANG Jian-ping, ZHANG Xin. Design and characteristic analysis of off-axis meta-lens[J]. Chinese Optics, 2024, 17(1): 52-60. doi: 10.37188/CO.2023-0039 | 
We propose a design method for off-axis meta-lens and analyze the effects of numerical aperture, off-axis angle, and incident wavelength on the simulation deviation, resolution and focusing efficiency of off-axis meta-lenses. Several off-axis meta-lenses with parameters 
	                | [1] | 
					 徐碧洁, 陈向宁, 赵峰, 等. 近红外波长超透镜的设计与仿真[J]. 激光与红外,2021,51(11):1466-1471. 
					XU B J, CHEN X N, ZHAO F, et al. Near-infrared wavelength metalens design and simulation[J]. Laser &Infrared, 2021, 51(11): 1466-1471. (in Chinese) 
						
					 | 
			
| [2] | 
					 刘逸天, 陈琦凯, 唐志远, 等. 超表面透镜的像差分析和成像技术研究[J]. 中国光学,2021,14(4):831-850. doi:  10.37188/CO.2021-0014 
					LIU Y T, CHEN Q K, TANG ZH Y, et al. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850. (in Chinese) doi:  10.37188/CO.2021-0014 
						
					 | 
			
| [3] | 
					 WANG Y J, CHEN Q M, YANG W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 2021, 12: 5560. doi:  10.1038/s41467-021-25797-9 
						
					 | 
			
| [4] | 
					 LIN P, LIN Y SH, LIN J, et al. Stretchable metalens with tunable focal length and achromatic characteristics[J]. Results in Physics, 2021, 31: 105005. doi:  10.1016/j.rinp.2021.105005 
						
					 | 
			
| [5] | 
					 SHAN D ZH, XU N X, GAO J S, et al. Design of the all-silicon long-wavelength infrared achromatic metalens based on deep silicon etching[J]. Optics Express, 2022, 30(8): 13616-13629. doi:  10.1364/OE.449870 
						
					 | 
			
| [6] | 
					 林若雨, 吴一凡, 付博妍, 等. 超构透镜的色差调控应用[J]. 中国光学,2021,14(4):764-781. doi:  10.37188/CO.2021-0096 
					LIN R Y, WU Y F, FU B Y, et al. Application of chromatic aberration control of metalens[J]. Chinese Optics, 2021, 14(4): 764-781. (in Chinese) doi:  10.37188/CO.2021-0096 
						
					 | 
			
| [7] | 
					 LI M M, LI SH SH, CHIN L K, et al. Dual-layer achromatic metalens design with an effective abbe number[J]. Optics Express, 2020, 28(18): 26041-26055. doi:  10.1364/OE.402478 
						
					 | 
			
| [8] | 
					 SHAN D ZH, GAO J S, XU N X, et al. Bandpass filter integrated metalens based on electromagnetically induced transparency[J]. Nanomaterials, 2022, 12(13): 2282. doi:  10.3390/nano12132282 
						
					 | 
			
| [9] | 
					 ZUO R ZH, LIU W W, CHENG H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Advanced Optical Materials, 2018, 6(21): 1800795. doi:  10.1002/adom.201800795 
						
					 | 
			
| [10] | 
					 LI Y Y, CAO L Y, WEN ZH Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Optics Letters, 2019, 44(1): 110-113. doi:  10.1364/OL.44.000110 
						
					 | 
			
| [11] | 
					 LI R ZH, GUO ZH Y, WEI W, et al. Arbitrary focusing lens by holographic metasurface[J]. Photonics Research, 2015, 3(5): 252-255. doi:  10.1364/PRJ.3.000252 
						
					 | 
			
| [12] | 
					 SAJEDIAN I, LEE H, RHO J. Double-deep Q-learning to increase the efficiency of metasurface holograms[J]. Scientific Reports, 2019, 9(1): 10899. doi:  10.1038/s41598-019-47154-z 
						
					 | 
			
| [13] | 
					 付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi:  10.37188/CO.2021-0017 
					FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi:  10.37188/CO.2021-0017 
						
					 | 
			
| [14] | 
					 AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8(1): 14992. doi:  10.1038/ncomms14992 
						
					 | 
			
| [15] | 
					 JIN J J, PU M B, WANG Y Q, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201. doi:  10.1002/admt.201600201 
						
					 | 
			
| [16] | 
					 WEI Q SH, HUANG L L, LI X W, et al. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 2017, 5(18): 1700434. doi:  10.1002/adom.201700434 
						
					 | 
			
| [17] | 
					 CHENG H, WEI X Y, YU P, et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J]. Applied Physics Letters, 2017, 110(17): 171903. doi:  10.1063/1.4982240 
						
					 | 
			
| [18] | 
					 BAI W, YANG P, WANG SH, et al. Actively tunable metalens array based on patterned phase change materials[J]. Applied Sciences, 2019, 9(22): 4927. doi:  10.3390/app9224927 
						
					 | 
			
| [19] | 
					 YU P, LI J X, ZHANG SH, et al. Dynamic Janus metasurfaces in the visible spectral region[J]. Nano Letters, 2018, 18(7): 4584-4589. doi:  10.1021/acs.nanolett.8b01848 
						
					 | 
			
| [20] | 
					 SHE A, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi:  10.1126/sciadv.aap9957 
						
					 | 
			
| [21] | 
					 KHORASANINEJAD M, CHEN W T, OH J, et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy[J]. Nano Letters, 2016, 16(6): 3732-3737. doi:  10.1021/acs.nanolett.6b01097 
						
					 | 
			
| [22] | 
					 ZHU A Y, CHEN W T, KHORASANINEJAD M, et al. Ultra-compact visible chiral spectrometer with meta-lenses[J]. APL Photonics, 2017, 2(3): 036103. doi:  10.1063/1.4974259 
						
					 | 
			
| [23] | 
					 ZHOU Y, CHEN R, MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J]. Optics Letters, 2017, 42(22): 4716-4719. doi:  10.1364/OL.42.004716 
						
					 | 
			
| [24] | 
					 ZHOU Y, CHEN R, MA Y G. Characteristic analysis of compact spectrometer based on off-axis meta-lens[J]. Applied Sciences, 2018, 8(3): 321. doi:  10.3390/app8030321 
						
					 | 
			
| [25] | 
					 ZHU A Y, CHEN W T, SISLER J, et al. Compact aberration‐corrected spectrometers in the visible using dispersion‐tailored metasurfaces[J]. Advanced Optical Materials, 2019, 7(14): 1801144. doi:  10.1002/adom.201801144 
						
					 | 
			
| [26] | 
					 罗先刚. 亚波长电磁学: 上册[M]. 北京: 科学出版社, 2017: 208-214. 
					LUO X G. Sub-Wavelength Electromagnetics:Vol. 1[M]. Beijing: Science Press, 2017: 208-214. (in Chinese) 
						
					 | 
			
| [27] | 
					 XIAO S Y, ZHAO F, WANG D Y, et al. Inverse design of a near-infrared metalens with an extended depth of focus based on double-process genetic algorithm optimization[J]. Optics Express, 2023, 31(5): 8668-8681. doi:  10.1364/OE.484471 
						
					 | 
			
| [28] | 
					 丁继飞, 刘文兵, 李含辉, 等. 大焦深离轴超透镜的设计与制作[J]. 物理学报,2021,70(19):197802. doi:  10.7498/aps.70.20202235 
					DING J F, LIU W B, LI H H, et al. Design and fabrication of off-axis meta-lens with large focal depth[J]. Acta Physica Sinica, 2021, 70(19): 197802. (in Chinese) doi:  10.7498/aps.70.20202235 
						
					 | 
			
| [29] | 
					 BANERJI S, MEEM M, MAJUMDER A, et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 2019, 6(6): 805-810. doi:  10.1364/OPTICA.6.000805 
						
					 |