Citation: | WANG Yurong, WAN Chenglong, LI Guojian, MA Aning. Arbitrary curve imaging and its application in polarization detection[J]. Chinese Optics. doi: 10.37188/CO.2025-0052 |
In order to investigate the imaging function of metasurface based on geometric phase theory, this article deduces the imaging formulation of arbitrary curve with the theory of geometric phase imaging on metalens, and its feasibility and correctness is verified by scalar diffraction theory. The imaging formulation is further applied in polarization detection of the incident beam. The results show that phase manipulation of metasurface based on geometric phase can achieve the functions of arbitrary curve imaging and polarization detection of the incident beam, which is of great significance in the field of holographic imaging, optical communication and quantum science.
[1] |
吴太夏, 张立福, 岑奕, 等. 偏振遥感的中性点大气纠正方法研究[J]. 遥感学报, 2013, 17(2): 241-247,235.
WU T X, ZHANG L F, CEN Y, et al. Neutral point consideration for atmospheric correction in polarization remote sensing[J]. Journal of Remote Sensing, 2013, 17(2): 241-247,235. (in Chinese).
|
[2] |
DUBEY K, SRIVASTAVA V, DALAL K. In vivo automated quantification of thermally damaged human tissue using polarization sensitive optical coherence tomography[J]. Computerized Medical Imaging and Graphics, 2018, 64: 22-28. doi: 10.1016/j.compmedimag.2018.01.002
|
[3] |
SHIN A, PARK J, DEMER J L. Opto-mechanical characterization of sclera by polarization sensitive optical coherence tomography[J]. Journal of Biomechanics, 2018, 72: 173-179. doi: 10.1016/j.jbiomech.2018.03.017
|
[4] |
UGRYUMOVA N, JACOBS J, BONESI M, et al. Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical coherence tomography[J]. Osteoarthritis and Cartilage, 2009, 17(1): 33-42. doi: 10.1016/j.joca.2008.05.005
|
[5] |
WANG R X, HAN J, LIU J L, et al. Multi-foci metalens for terahertz polarization detection[J]. Optics Letters, 2020, 45(13): 3506-3509. doi: 10.1364/OL.395580
|
[6] |
YUE ZH, LI J T, ZHENG C L, et al. Manipulation of polarization conversion and multiplexing via all-silicon phase-modulated metasurfaces[J]. Chinese Optics Letters, 2022, 20(4): 043601. doi: 10.3788/COL202220.043601
|
[7] |
HE G L, ZHENG Y Q, ZHOU CH D, et al. Multiplexed manipulation of orbital angular momentum and wavelength in metasurfaces based on arbitrary complex-amplitude control[J]. Light: Science & Applications, 2024, 13(1): 98.
|
[8] |
WAHEED M, MAHMOOD N, SHAFQAT M D, et al. Advancing broadband light structuring through single-size nanostructured all-dielectric meta-devices[J]. Materials Today Communications, 2023, 36: 106584. doi: 10.1016/j.mtcomm.2023.106584
|
[9] |
XIONG B, LIU Y, XU Y H, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 2023, 379(6629): 294-299. doi: 10.1126/science.ade5140
|
[10] |
RIND Y M, MAHMOOD N, MEHMOOD M Q, et al. Multidimensional and multifunctional metasurface design using hybrid spin decoupling[J]. Optical Materials Express, 2023, 13(4): 1150-1162. doi: 10.1364/OME.481912
|
[11] |
MA ZH Y, TIAN T T, LIAO Y X, et al. Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces[J]. Nature Communications, 2024, 15(1): 8370. doi: 10.1038/s41467-024-52676-w
|
[12] |
JI J T, LI J, WANG ZH ZH, et al. On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix[J]. Nature Communications, 2024, 15(1): 8271. doi: 10.1038/s41467-024-52476-2
|
[13] |
YUE Z Q, SIPAHI T, AHMED H, et al. Multispectral polarization states generation with a single metasurface[J]. Laser & Photonics Reviews, 2024, 18(10): 2400176.
|
[14] |
CHEN M J, WEN L, PAN D H, et al. Full-color nanorouter for high-resolution imaging[J]. Nanoscale, 2021, 13(30): 13024-13029. doi: 10.1039/D1NR02166D
|
[15] |
陈沁, 文龙, 杨先光, 等. 面向高像素密度图像传感器的结构色技术[J]. 光学学报, 2021, 41(8): 0823010. doi: 10.3788/AOS202141.0823010
CHEN Q, WEN L, YANG X G, et al. Structural color technology for high pixel density image sensors[J]. Acta Optica Sinica, 2021, 41(8): 0823010. (in Chinese). doi: 10.3788/AOS202141.0823010
|
[16] |
ASAD A, KIM J, KHALIQ H S, et al. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators[J]. Nanoscale Horizons, 2023, 8(6): 759-766. doi: 10.1039/D2NH00555G
|
[17] |
陈磊, 严金华, 郭焕祥, 等. 基于硅基超表面的高效率大角度光束偏转[J]. 光学学报, 2021, 41(3): 0305001. doi: 10.3788/AOS202141.0305001
CHEN L, YAN J H, GUO H X, et al. Highly efficient large-angle beam deflection based on silicon-based metasurface[J]. Acta Optica Sinica, 2021, 41(3): 0305001. (in Chinese). doi: 10.3788/AOS202141.0305001
|
[18] |
HU J, BANDYOPADHYAY S, LIU Y H, et al. A review on metasurface: from principle to smart metadevices[J]. Frontiers in Physics, 2021, 8: 586087. doi: 10.3389/fphy.2020.586087
|
[19] |
LI J X, YU P, ZHANG SH, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3
|
[20] |
BAO L, WU B, WU R Y, et al. On‐chip multidimensional manipulations of spatial laser fields by jointly controlling amplitude and phase of metasurface[J]. Advanced Functional Materials, 2025, 35(9): 2415983. doi: 10.1002/adfm.202415983
|
[21] |
LI S Q, CHEN CH, WANG G X, et al. Metasurface polarization optics: phase manipulation for arbitrary polarization conversion condition[J]. Physical Review Letters, 2025, 134(2): 023803. doi: 10.1103/PhysRevLett.134.023803
|
[22] |
XU M ZH, CAO Y, SUN X J, et al. Circular polarization detection metasurface inspired by the polarized vision of mantis shrimp[J]. Optics Communications, 2022, 507: 127599. doi: 10.1016/j.optcom.2021.127599
|
[23] |
ZANG H P, YANG Z Y, ZHOU X Y, et al. Full-stokes polarization detection enabled by a terahertz all-dielectric metasurface[J]. Journal of Applied Physics, 2024, 135(18): 183103. doi: 10.1063/5.0208045
|
[24] |
ZENG J W, LI L, YANG X D, et al. Generating and separating twisted light by gradient–rotation split-ring antenna metasurfaces[J]. Nano Letters, 2016, 16(5): 3101-3108. doi: 10.1021/acs.nanolett.6b00360
|
[25] |
刘梦蛟, 李添悦, 戈钦, 等. 多功能超构表面的相位调控机制及研究进展[J]. 光学学报, 2022, 42(21): 2126004. doi: 10.3788/AOS202242.2126004
LIU M J, LI T Y, GE Q, et al. Phase modulation mechanism and research progress of multifunctional metasurfaces[J]. Acta Optica Sinica, 2022, 42(21): 2126004. (in Chinese). doi: 10.3788/AOS202242.2126004
|
[26] |
KAMALI S M, ARBABI A, ARBABI E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7(1): 11618. doi: 10.1038/ncomms11618
|
[27] |
JI J T, LI J, WANG ZH ZH, et al. On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix[J]. Nature Communications, 2024, 15(1): 8271. (查阅网上资料, 本条文献与第12条文献重复, 请确认).
|
[28] |
LIU X, CAO Q, ZHANG N J, et al. Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers[J]. Nature Communications, 2024, 15(1): 5435. doi: 10.1038/s41467-024-49819-4
|
[29] |
DENG Z L, HU M X, QIU SH F, et al. Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law[J]. Nature Communications, 2024, 15(1): 2380. doi: 10.1038/s41467-024-46758-y
|