Turn off MathJax
Article Contents
TANG Zuo, WANG Xiao-heng, MAO Ye-fei, ZHAO Ruo-chen, ZHAO Bao-zhen, CHANG Hui-cong, YANG Chang, XIAO Lin. Intense light interference suppression technique based on regional flipping of digital micromirror device[J]. Chinese Optics. doi: 10.37188/CO.2025-0095
Citation: TANG Zuo, WANG Xiao-heng, MAO Ye-fei, ZHAO Ruo-chen, ZHAO Bao-zhen, CHANG Hui-cong, YANG Chang, XIAO Lin. Intense light interference suppression technique based on regional flipping of digital micromirror device[J]. Chinese Optics. doi: 10.37188/CO.2025-0095

Intense light interference suppression technique based on regional flipping of digital micromirror device

cstr: 32171.14.CO.2025-0095
Funds:  Supported by Enterprise Innovation and Development Joint Fund of the National Natural Science Foundation (No. U24B2009)
More Information
  • Corresponding author: xiaolin_82@163.com
  • Received Date: 08 Jul 2025
  • Rev Recd Date: 02 Sep 2025
  • Accepted Date: 18 Sep 2025
  • Available Online: 27 Sep 2025
  • To address the interference and dazzling threats posed by high-power lasers to the imaging of detectors, this paper proposes and validates a dynamic laser interference suppression method based on regional flipping of digital micromirror device (DMD). This method employs a secondary imaging optical path, placing the DMD at the primary image plane. Through real-time identification and flipping of micromirrors corresponding to the laser interference region, high-power interference energy is deflected out of the main optical path, thereby protecting the detector while retaining effective image information of most of the field of view. First, we verified the feasibility of this scheme through optical simulations, and subsequently built an experimental platform for systematic testing. Furthermore, this study quantifies the influence of the mask radius controlling DMD flipping on the suppression effect, verifying that the optimal suppression effect is achieved when the flipped region is larger than the interference spot. Experimental results demonstrate that DMD regional flipping nethod can effectively suppress laser interference across different laser powers and incident angles. Compared with the scenario without suppression, the interference power received by the detector is significantly reduced: when laser incidence is off-axis, the laser interference resistance threshold is increased by more than 28.5 dB; when laser interference occurs with incidence parallel to the optical axis, the laser interference resistance threshold can be enhanced by more than 30 dB. In comparison with traditional image processing methods, this method can retain the maximum amount of image information under strong light jamming scenarios. Technology provides an efficient and concise solution for photoelectric systems to maintain stable imaging in strong light interference environments.

     

  • loading
  • [1]
    曹生珠, 何延春, 王健, 等. 卫星用高能激光防护技术发展现状[J]. 真空与低温, 2024, 30(1): 1-9.

    CAO SH ZH, HE Y CH, WANG J, et al. Development status of high energy laser protection technology for satellites[J]. Vacuum and Cryogenics, 2024, 30(1): 1-9. (in Chinese).
    [2]
    陈健, 高慧斌. 高重频CO2激光干扰技术研究[J]. 中国光学, 2018, 11(6): 983-990. doi: 10.3788/co.20181106.0983

    CHEN J, GAO H B. Research on the interference technology of high repetition frequency CO2 laser[J]. Chinese Optics, 2018, 11(6): 983-990. (in Chinese). doi: 10.3788/co.20181106.0983
    [3]
    李仰亮, 叶庆, 吴云龙, 等. 光电成像系统激光防护技术研究进展(特邀)[J]. 红外与激光工程, 2023, 52(6): 20230192. doi: 10.3788/IRLA20230192

    LI Y L, YE Q, WU Y L, et al. Research progress of laser protection technology for optoelectronic imaging system (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230192. (in Chinese). doi: 10.3788/IRLA20230192
    [4]
    陈京生, 李清, 吴红, 等. 国外激光武器及其标准化的研究进展[J]. 兵器装备工程学报, 2023, 44(10): 165-172.

    CHEN J SH, LI Q, WU H, et al. Research progress of laser weapons and its standardization abroad[J]. Journal of Ordnance Equipment Engineering, 2023, 44(10): 165-172. (in Chinese).
    [5]
    HONG L H, HU CH Y, LIU Y Y, et al. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation[J]. PhotoniX, 2023, 4(1): 11. doi: 10.1186/s43074-023-00088-2
    [6]
    姜玉刚, 刘华松, 王利栓, 等. 卫星激光防护薄膜窗口的设计与制备技术研究[J]. 中国光学, 2019, 12(4): 804-809. doi: 10.3788/co.20191204.0804

    JIANG Y G, LIU H S, WANG L SH, et al. Design and preparation technology of laser protective film window of satellite[J]. Chinese Optics, 2019, 12(4): 804-809. (in Chinese). doi: 10.3788/co.20191204.0804
    [7]
    ZHENG J Y, LI Z J, ZHANG M Q, et al. New type of coatings combining invisibility and high power laser protection function[J]. Ceramics International, 2024, 50(7): 11442-11450. doi: 10.1016/j.ceramint.2024.01.044
    [8]
    朱锦鹏, 马壮, 高丽红, 等. 基于等离子喷涂的反射型激光防护涂层研究[J]. 中国光学, 2017, 10(5): 578-587. doi: 10.3788/co.20171005.0578

    ZHU J P, MA ZH, GAO L H, et al. Reflective laser protective coating based on plasma spraying[J]. Chinese Optics, 2017, 10(5): 578-587. (in Chinese). doi: 10.3788/co.20171005.0578
    [9]
    李荣斌, 邢悦, 张志玺, 等. 等离子喷涂YSZ热障涂层的工艺研究[J]. 表面技术, 2024, 53(7): 217-229.

    LI R B, XING Y, ZHANG ZH X, et al. Plasma spraying process of YSZ thermal barrier coatings[J]. Surface Technology, 2024, 53(7): 217-229.
    [10]
    ZHU J P, MA ZH, GAO L H, et al. Influence of microstructure on the optical property of plasma-sprayed Al, Cu, and Ag coatings[J]. Materials & Design, 2016, 111: 192-197.
    [11]
    WANG Z X, JI X W, DONG N N, et al. Femtosecond laser-induced phase transition in VO2 films[J]. Optics Express, 2022, 30(26): 47421-47429. doi: 10.1364/OE.477910
    [12]
    TOGNAZZI A, GANDOLFI M, LI B H, et al. Opto-thermal dynamics of thin-film optical limiters based on the VO2 phase transition[J]. Optical Materials Express, 2023, 13(1): 41-52. doi: 10.1364/OME.472347
    [13]
    叶庆, 李仰亮, 吴云龙, 等. 立方涡旋相位掩模板编码成像系统激光致盲防护性能研究(特邀)[J]. 激光与光电子学进展, 2024, 61(20): 20110101. (查阅网上资料, 请核对标黄中标黄信息).

    YE Q, LI Y L, WU Y L, et al. Research on laser blinding protection performance of cubic-vortex phase mask coding imaging system (invited)[J]. Laser & Optoelectronics Progress, 2024, 61(20): 20110101.
    [14]
    吕泽, 方佑, 冯迢, 等. 非线性光限幅材料原理、性能表征及研究进展[J]. 中国光学(中英文), 2022, 15(4): 625-639. doi: 10.37188/CO.2021-0195

    LV Z, FANG Y, FENG T, et al. The principle, performance characterization and research progress of nonlinear optical limiting materials[J]. Chinese Optics, 2022, 15(4): 625-639. (in Chinese). doi: 10.37188/CO.2021-0195
    [15]
    吕婷婷, 付天舒, 刘东明, 等. 带宽可调谐的太赫兹超构材料半波片器件[J]. 中国光学(中英文), 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198

    LV T T, FU T SH, LIU D M, et al. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. (in Chinese). doi: 10.37188/CO.2022-0198
    [16]
    HOWES A, ZHU ZH H, CURIE D, et al. Optical limiting based on Huygens’ metasurfaces[J]. Nano Letters, 2020, 20(6): 4638-4644. doi: 10.1021/acs.nanolett.0c01574
    [17]
    GUAN H, REN F F, LIANG SH H, et al. Ultra-high transmission broadband tunable VO2 optical limiter[J]. Laser & Photonics Reviews, 2023, 17(4): 2200653.
    [18]
    DOWSKI E R, CATHEY W T. Extended depth of field through wave-front coding[J]. Applied Optics, 1995, 34(11): 1859-1866. doi: 10.1364/AO.34.001859
    [19]
    YE Q, WU Y L, ZHANG H, et al. Experimental damage thresholds of a laser suppression imaging system using a cubic phase plate[J]. Chinese Optics Letters, 2023, 21(4): 041403. doi: 10.3788/COL202321.041403
    [20]
    LI Y L, YE Q, WANG L, et al. Analysis of laser-protection performance of asymmetric-phase-mask wavefront-coding imaging systems[J]. Current Optics and Photonics, 2023, 7(1): 1-14.
    [21]
    赵惠, 魏静萱, 庞志海, 等. 波前编码超分辨成像技术[J]. 红外与激光工程, 2016, 45(4): 0422003. doi: 10.3788/irla201645.0422003

    ZHAO H, WEI J X, PANG ZH H, et al. Wave-front coded super-resolution imaging technique[J]. Infrared and Laser Engineering, 2016, 45(4): 0422003. (in Chinese). doi: 10.3788/irla201645.0422003
    [22]
    WANG L, YE Q, DOU X N, et al. Anti-cat-eye effect imaging technique based on the light-field imaging technique[J]. Journal of Electronic Imaging, 2019, 28(5): 053020.
    [23]
    LI Y L, YE Q, WANG L, et al. Analysis of laser-protection performance of asymmetric-phase-mask wavefront-coding imaging systems[J]. Current Optics and Photonics, 2023, 7(1): 1-14. (查阅网上资料, 本条文献与第20条文献重复, 请确认).
    [24]
    RITT G, SCHWARZ B, EBERLE B. Preventing image information loss of imaging sensors in case of laser dazzle[J]. Optical Engineering, 2019, 58(1): 013109.
    [25]
    RITT G, EBERLE B. Use of complementary wavelength bands for laser dazzle protection[J]. Optical Engineering, 2020, 59(1): 015106.
    [26]
    QIAO Y, XU X P, LIU T, et al. Design of a high-numerical-aperture digital micromirror device camera with high dynamic range[J]. Applied Optics, 2015, 54(1): 60-70. doi: 10.1364/AO.54.000060
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(6)

    Article views(16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return