| Citation: | ZHANG Jia-qi, XIA Mao-bin, GUO Yi-bo, GUO Xu. Dynamic response characteristics of mirror-shaped structures in temperature gradient fields[J]. Chinese Optics. doi: 10.37188/CO.2025-0111 |
During the ascent of an aircraft to its cruising altitude, the external environmental temperature changes drastically. Simultaneously, the internal stepper motors and bearings continuously generate heat due to the periodic rapid start-stop operations of the scanning mirror turntable in the step-scanning mode. These factors cause a temperature gradient across the turntable, which induces thermal deformation of the mirror surface figure and ultimately degrades the imaging quality of the optical system. To address this issue, an analysis method based on thermal-structural coupling is proposed. First, the thermal balance equation of the scanning mirror turntable was established. Combined with the actual thermal boundary conditions, a finite element analysis (FEA) model was constructed. This model was utilized to optimize the design of the mirror assembly and the adhesive layer by analyzing the relationship between the surface figure and adhesive parameters under complex thermal environments and working conditions. The optimization results show that when the adhesive layer thickness is 1 mm, the mirror achieves the optimal surface figure accuracy with a root-mean-square (RMS) value of 43.54 nm. Furthermore, ground thermal chamber tests were conducted to simulate the temperature variations and operating status during takeoff. The relative error between the experimental measurements and the simulation results is less than 10%. These results verify that the proposed method is effective for evaluating the dynamic response characteristics of the scanning mirror surface in a temperature gradient field, providing theoretical support for the design of the mirror bonding layer and related components.
| [1] |
QU R, ZHANG H W, YANG L, et al. Analysis and design of infrared search and track system with afocal zoom telescope[J]. Applied Sciences, 2023, 13(24): 13132. doi: 10.3390/app132413132
|
| [2] |
LI H, ZHANG J J, CAI L X, et al. The dynamic prediction method for aircraft cabin temperatures based on flight test data[J]. Aerospace, 2024, 11(9): 755. doi: 10.3390/aerospace11090755
|
| [3] |
王瑾, 柳鸣, 安志勇. 基于牛顿反射式红外系统的二维转台的结构设计与有限元分析[J]. 光学仪器, 2015, 37(4): 358-362. doi: 10.3969/j.issn.1005-5630.2015.04.016
WANG J, LIU M, AN ZH Y. Two-dimensional turntable structure design and finite element analysis based on Newton's reflex infrared system[J]. Optical Instruments, 2015, 37(4): 358-362. (in Chinese). doi: 10.3969/j.issn.1005-5630.2015.04.016
|
| [4] |
WANG D X, LI ZH G, LIN J Q, et al. Thermal-optical characteristics analysis of an aerial camera optical system[J]. Applied Optics, 2022, 61(28): 8190-8196. doi: 10.1364/AO.459626
|
| [5] |
杨勋, 徐抒岩, 李晓波, 等. 温度梯度对大口径反射镜热稳定性公差的影响[J]. 红外与激光工程, 2019, 48(9): 916003. doi: 10.3788/IRLA201948.0916003
YANG X, XU SH Y, LI X B, et al. Influence of temperature gradient on thermal stability tolerance of large aperture reflective mirror[J]. Infrared and Laser Engineering, 2019, 48(9): 916003. (in Chinese). doi: 10.3788/IRLA201948.0916003
|
| [6] |
王丹艺, 蒋山平, 周盈, 等. 用于航天光照模拟的吊挂式米级金属反射镜热稳定性分析[J]. 光学技术, 2021, 47(4): 385-389. doi: 10.13741/j.cnki.11-1879/o4.2021.04.001
WANG D Y, JIANG SH P, ZHOU Y, et al. Thermal stability analysis of Meter-scale metal mirrors for space illumination simulation[J]. Optical Technique, 2021, 47(4): 385-389. (in Chinese). doi: 10.13741/j.cnki.11-1879/o4.2021.04.001
|
| [7] |
吴清文, 卢锷, 王家骐, 等. 主镜稳定温度场特性分析[J]. 光学 精密工程, 1996, 4(6): 47-53.
WU Q W, LU E, WANG J Q, et al. A study on static thermal properties of primary mirror[J]. Optics and Precision Engineering, 1996, 4(6): 47-53. (in Chinese).
|
| [8] |
王富国. 温度和支撑方式对1.2m SiC主镜面形的影响分析[J]. 光子学报, 2011, 40(6): 933-936. doi: 10.3788/gzxb20114006.0933
WANG F G. Study on the influence of temperature and support style to the 1.2m Sic primary mirror surface figure[J]. Acta Photonica Sinica, 2011, 40(6): 933-936. (in Chinese). doi: 10.3788/gzxb20114006.0933
|
| [9] |
谷果果. 空间温变场对不同结构平面反射镜的性能影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
GU G G. Research on the effects of space temperature field on performance of different structures plane mirror[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese).
|
| [10] |
郑潇逸. 基于热致主动光学的大口径空间相机波前校正关键技术研究[D]. 长春: 吉林大学, 2025.
ZHENG X Y. Research on key technology of wavefront correction of large aperture space camera based on thermal active optical[D]. Changchun: Jilin University, 2025. (in Chinese).
|
| [11] |
林子轩. 非均匀温度场下的多折叠肋式可展天线结构热响应分析[D]. 沈阳: 沈阳建筑大学, 2024.
LIN Z X. Analysis of thermal response of multi-folding rib flexible antenna structure at non-uniform temperature field[D]. Shenyang: Shenyang Jianzhu University, 2024. (in Chinese).
|
| [12] |
张庆. 基于温度反馈与有限元分析的光学天线自动装调技术研究[D]. 长春: 长春理工大学, 2024.
ZHANG Q. Research on automatic alignment technology of optical antenna based on temperature feed back and finite element analysis[D]. Changchun: Changchun University of Science and Technology, 2024. (in Chinese).
|
| [13] |
张家齐, 郭艺博, 张友建, 等. 机载宽温条件下反射镜组件与粘接层设计[J]. 中国光学(中英文), 2023, 16(3): 578-586.
ZHANG J Q, GUO Y B, ZHANG Y J, et al. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. (in Chinese).
|
| [14] |
ZHANG X M, LIU J H, XIA H X, et al. Effects of curing, temperature, pressure, and moisture on the surface-figure of a high-precision bonded Mirror[J]. Precision Engineering, 2024, 85: 205-216. doi: 10.1016/j.precisioneng.2023.10.012
|
| [15] |
曹赛赛, 杨海生, 罗斌, 等. 热力耦合作用的航空发动机主轴球轴承动力学分析[J]. 航空动力学报, 2024, 39(12): 20220890. doi: 10.13224/j.cnki.jasp.20220890
CAO S S, YANG H SH, LUO B, et al. Dynamic analysis of aero-engine spindle ball bearings with thermal-mechanical coupling[J]. Journal of Aerospace Power, 2024, 39(12): 20220890. (in Chinese). doi: 10.13224/j.cnki.jasp.20220890
|
| [16] |
朱爱华, 朱成九, 张卫华. 滚动轴承摩擦力矩的计算分析[J]. 轴承, 2008(7): 1-3. doi: 10.3969/j.issn.1000-3762.2008.07.001
ZHU A H, ZHU CH J, ZHANG W H. Analysis on calculation of friction torque of rolling bearings[J]. Bearing, 2008(7): 1-3. (in Chinese). doi: 10.3969/j.issn.1000-3762.2008.07.001
|