Turn off MathJax
Article Contents
XU Shou-long, WANG Zhi-lin, HUANG You-Jun, LI Qing-Xin, ZOU Shu-liang. Ionizing Particle Discrimination and Extraction Based on Morphological Imaging Features[J]. Chinese Optics. doi: 10.37188/CO.2025-0134
Citation: XU Shou-long, WANG Zhi-lin, HUANG You-Jun, LI Qing-Xin, ZOU Shu-liang. Ionizing Particle Discrimination and Extraction Based on Morphological Imaging Features[J]. Chinese Optics. doi: 10.37188/CO.2025-0134

Ionizing Particle Discrimination and Extraction Based on Morphological Imaging Features

cstr: 32171.14.CO.2025-0134
Funds:  Supported by this research is funded by the National Natural Science Foundation of China (No. 11905102).
More Information
  • Corresponding author: xusl@usc.edu.cn
  • Received Date: 22 Oct 2025
  • Accepted Date: 25 Dec 2025
  • Available Online: 09 Feb 2026
  • To reduce pulse pile-up and improve ionizing particle discrimination efficiency. This study uses a CMOS active pixel sensor to analyze ionizing particle optical responses and propose morphology-based discrimination. Particle response features were compared to reveal gain and integration effects, and discrimination effectiveness was validated. Results show α events differ significantly from β and γ events in pixel count, mean pixel value, rectangularity, convexity, and compactness. β and γ events are similar in pixel count, rectangularity, and convexity, but differ in mean pixel value or compactness. Using pixel count, α events were identified with over 99% accuracy. β and γ events were discriminated by mean pixel value with over 82% accuracy. The results provide a new method and basis for ionizing particle identification in mixed radiation fields. It supports nuclear particle discrimination and noise mitigation, providing new approaches and theoretical guidance.

     

  • loading
  • [1]
    HADFIELD R H, LEACH J, FLEMING F, et al. Single-photon detection for long-range imaging and sensing[J]. Optica, 2023, 10(9): 1124-1141. doi: 10.1364/OPTICA.488853
    [2]
    DUTTON N A W, GYONGY I, PARMESAN L, et al. A SPAD-based QVGA image sensor for single-photon counting and quanta imaging[J]. IEEE Transactions on Electron Devices, 2016, 63(1): 189-196. doi: 10.1109/TED.2015.2464682
    [3]
    MADONINI F, SEVERINI F, ZAPPA F, et al. Single photon avalanche diode arrays for quantum imaging and microscopy[J]. Advanced Quantum Technologies, 2021, 4(7): 2100005. doi: 10.1002/qute.202100005
    [4]
    MA J J, ZHANG D X, ROBLEDO D, et al. Ultra-high-resolution quanta image sensor with reliable photon-number-resolving and high dynamic range capabilities[J]. Scientific Reports, 2022, 12(1): 13869. doi: 10.1038/s41598-022-17952-z
    [5]
    GUO X D, HE P, LV X J, et al. Material decomposition of spectral CT images via attention-based global convolutional generative adversarial network[J]. Nuclear Science and Techniques, 2023, 34(3): 45. doi: 10.1007/s41365-023-01184-5
    [6]
    YANG J ZH, LI M F, CHEN X X, et al. Single-photon quantum imaging via single-photon illumination[J]. Applied Physics Letters, 2020, 117(21): 214001. doi: 10.1063/5.0021214
    [7]
    CHENG Q Q, MA CH W, YUAN Y ZH, et al. X-ray detection based on complementary metal-oxide-semiconductor sensors[J]. Nuclear Science and Techniques, 2019, 30(1): 9. doi: 10.1007/s41365-018-0528-4
    [8]
    HE R, NIU X Y, WANG Y, et al. Advances in nuclear detection and readout techniques[J]. Nuclear Science and Techniques, 2023, 34(12): 205. doi: 10.1007/s41365-023-01359-0
    [9]
    CHAKRABORTY A, PARASHAR N, PANDEY D K, et al. Radiological complexity of nuclear facilities: an information complexity approach to workplace monitoring[J]. Journal of Radiological Protection, 2024, 44(2): 021511. doi: 10.1088/1361-6498/ad42a5
    [10]
    罗智文, 冯婕, 郭旗, 等. 质子辐照下动态星敏感器质心定位[J]. 光学 精密工程, 2025, 33(13): 2089-2107.

    LUO ZH W, FENG J, GUO Q, et al. Centroid localization of dynamic star sensors under proton irradiation[J]. Optics and Precision Engineering, 2025, 33(13): 2089-2107. (in Chinese).
    [11]
    LUO D W, WU H Y, LI ZH H, et al. Performance of digital data acquisition system in gamma-ray spectroscopy[J]. Nuclear Science and Techniques, 2021, 32(8): 79. doi: 10.1007/s41365-021-00917-8
    [12]
    GU Z, PROUT D L, TASCHEREAU R, et al. A new pulse pileup rejection method based on position shift identification[J]. IEEE Transactions on Nuclear Science, 2016, 63(1): 22-29. doi: 10.1109/TNS.2015.2495169
    [13]
    LIU X H, LIU B Q, LIU M ZH, et al. An optimized SVR algorithm for pulse pile-up correction in pulse shape discrimination[J]. Sensors, 2024, 24(23): 7545. doi: 10.3390/s24237545
    [14]
    NEUBÜSER C, CORRADINO T, DALLA BETTA G F, et al. ARCADIA FD-MAPS: simulation, characterization and perspectives for high resolution timing applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1048: 167946. doi: 10.1016/j.nima.2022.167946
    [15]
    YOO S, PARK S, YUN S, et al. Impact of the fiber-optic faceplate on the imaging performance of a CMOS X-ray detector[J]. Journal of Instrumentation, 2024, 19(12): P12003. doi: 10.1088/1748-0221/19/12/P12003
    [16]
    ALMEIDA B D, AMARO F D, ANTONIETTI R, et al. Noise assessment of CMOS active pixel sensors for the CYGNO Experiment[J]. Measurement Science and Technology, 2023, 34(12): 125145. doi: 10.1088/1361-6501/acf7e1
    [17]
    刘塔拉, 任同阳, 于勇, 等. 地基大型光学望远镜大靶面相机成像电路设计[J]. 光学 精密工程, 2025, 33(21): 3373-3382. doi: 10.37188/OPE.20253321.3373

    LIU T L, REN T Y, YU Y, et al. Design of imaging circuit for large-format camera of ground-based large optical telescope[J]. Optics and Precision Engineering, 2025, 33(21): 3373-3382. (in Chinese). doi: 10.37188/OPE.20253321.3373
    [18]
    ZHOU ZH, ZHOU SH Q, WANG D, et al. Low-noise and low-power pixel sensor chip for gas pixel detectors[J]. Nuclear Science and Techniques, 2024, 35(3): 58. doi: 10.1007/s41365-024-01418-0
    [19]
    LIU SH H, GAO C S, ZHANG X, et al. CMOS direct conversion X-ray detector coupled with fluorinated liquid[J]. Nuclear Science and Techniques, 2025, 36(1): 1. doi: 10.1007/s41365-024-01529-8
    [20]
    XU R, HSU C K, KALANI S, et al. Single-event upset responses of metal-oxide-metal capacitors and diodes used in bulk 65-nm CMOS analog circuits[J]. IEEE Transactions on Nuclear Science, 2020, 67(4): 698-707. doi: 10.1109/TNS.2020.2974229
    [21]
    HU M D, PADGETT F, MCCURDY M W, et al. Probing the single-event sensitivity of a COTS 3D-integrated imager with alpha particle irradiation[J]. IEEE Transactions on Nuclear Science, 2023, 70(4): 410-417. doi: 10.1109/TNS.2022.3222099
    [22]
    XU SH L, ZOU SH L, HAN Y C, et al. Study on the availability of 4T-APS as a video monitor and radiation detector in nuclear accidents[J]. Sustainability, 2018, 10(7): 2172. doi: 10.3390/su10072172
    [23]
    PÉREZ M, LIPOVETZKY J, HARO M S, et al. Particle detection and classification using commercial off the shelf CMOS image sensors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 827: 171-180. doi: 10.1016/j.nima.2016.04.072
    [24]
    BAR O, BIBRZYCKI Ł, NIEDŹWIECKI M, et al. Zernike moment based classification of cosmic ray candidate hits from CMOS sensors[J]. Sensors, 2021, 21(22): 7718. doi: 10.3390/s21227718
    [25]
    HARO M S, BESSIA F A, PÉREZ M, et al. Soft X-rays spectroscopy with a commercial CMOS image sensor at room temperature[J]. Radiation Physics and Chemistry, 2020, 167: 108354. doi: 10.1016/j.radphyschem.2019.108354
    [26]
    XUE Y Y, WANG Z J, MA W Y, et al. Comparison of displacement damage effects on the dark signal in CMOS image sensors induced by CSNS back-n and XAPR neutrons[J]. Nuclear Science and Techniques, 2024, 35(10): 169. doi: 10.1007/s41365-024-01513-2
    [27]
    LIU J, ZHOU ZH, WANG D, et al. Prototype of single-event effect localization system with CMOS pixel sensor[J]. Nuclear Science and Techniques, 2022, 33(11): 136. doi: 10.1007/s41365-022-01128-5
    [28]
    LIANG B, LIU J H, ZHANG X P, et al. Total ionizing dose effect modeling method for CMOS digital-integrated circuit[J]. Nuclear Science and Techniques, 2024, 35(2): 26. doi: 10.1007/s41365-024-01378-5
    [29]
    TIWARI M K, DIWAN J, SINGH S K, et al. Study of TID & dose rate effect of gamma radiation on COTS CMOS camera[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2025, 563: 165700. doi: 10.1016/j.nimb.2025.165700
    [30]
    任同群, 曹润嘏, 张国锐, 等. 星敏感器CMOS电路板靶面自动装调系统[J]. 光学 精密工程, 2024, 32(16): 2513-2522.

    REN T Q, CAO R G, ZHANG G R, et al. Automatic assembly and adjustment system for target surface of CMOS circuit board of star sensor[J]. Optics and Precision Engineering, 2024, 32(16): 2513-2522.
    [31]
    YANG M Y, QIAN Y, PU T L, et al. Edims: an event-driven internal memory synchronized readout prototype ASIC chip developed for HFRS-TPC[J]. Nuclear Science and Techniques, 2023, 34(12): 196. doi: 10.1007/s41365-023-01341-w
    [32]
    INAGAKI Y, MATSUYA Y. A method for detecting timing of photodiode saturation without in-pixel TDC for high-dynamic-range CMOS image sensor[J]. IEICE Transactions on Electronics, 2021, E104. C(10): 607-616.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(7) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return