Citation: | ZHOU Yun-fei, ZOU Lin-er, CHENG Yang-bing, SHEN Yun. Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0003 |
Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems. However, due to the high phase dispersion of unit structures, metalens often exhibits chromatic aberration, making broadband achromatic infrared imaging challenging to achieve. In this paper, six different unit structures based on chalcogenide glass are constructed, and their phase-dispersion parameters are analyzed to establish a database. On this basis, using chromatic aberration compensation and parameterized adjoint topology optimization, a broadband achromatic metalens with a numerical aperture of 0.5 is designed by arranging these six unit structures in the far-infrared band. Simulation results show that the metalens achieves near diffraction-limited focusing within the operating wavelength range of 9−11 µm, demonstrating the good performance of achromatic aberration with flat focusing efficiency of 54%−58% across all wavelengths.
[1] |
AHMAD M, LI J N, ZHOU R Y, et al. Ultrathin ring-shaped metasurface for a multiview 3D display[J]. Applied Optics, 2024, 63(19): 5217-5222.
|
[2] |
WU ZH X, ZOU Y Y, DENG H, et al. Broadband devices for a polarization converter based on optical metasurfaces[J]. Applied Optics, 2022, 61(24): 7119-7124. doi: 10.1364/AO.464801
|
[3] |
OU K, YU F L, LI G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Science Advances, 2020, 6(37): eabc0711.
|
[4] |
CHEN J, YU F L, LIU X S, et al. Polychromatic full-polarization control in mid-infrared light[J]. Light: Science & Applications, 2023, 12(1): 105.
|
[5] |
WANG J X, YU F L, CHEN J, et al. Continuous‐spectrum–polarization recombinant optical encryption with a dielectric metasurface[J]. Advanced Materials, 2023, 35(41): 2304161.
|
[6] |
LI Y P, LUO J CH, JI R N, et al. Long wavelength infrared metalens fabricated by photolithography[J]. Journal of Infrared and Millimeter Waves, 2024, 43(5): 603-608. (in Chinese).
|
[7] |
KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
|
[8] |
WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.
|
[9] |
XIE Y, ZHANG J Q, WANG SH Y, et al. Broadband achromatic polarization-insensitive metalens in the mid-wave infrared range[J]. Applied Optics, 2022, 61(14): 4106-4112.
|
[10] |
SANG D, XU M F, PU M B, et al. Toward high‐efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization[J]. Laser & Photonics Reviews, 2022, 16(10): 2200265.
|
[11] |
MANSOUREE M, MCCLUNG A, SAMUDRALA S, et al. Large-scale parametrized metasurface design using adjoint optimization[J]. ACS Photonics, 2021, 8(2): 455-463. doi: 10.1021/acsphotonics.0c01058
|
[12] |
PHAN T, SELL D, WANG E W, et al. High-efficiency, large-area, topology-optimized metasurfaces[J]. Light: Science & Applications, 2019, 8: 48.
|
[13] |
CHRISTIANSEN R E, SIGMUND O. Inverse design in photonics by topology optimization: tutorial[J]. Journal of the Optical Society of America B, 2021, 38(2): 496-509.
|
[14] |
LIN Z, LIU V, PESTOURIE R, et al. Topology optimization of freeform large-area metasurfaces[J]. Optics Express, 2019, 27(11): 15765-15775.
|
[15] |
CHEN F T, CRAIGHEAD H G. Diffractive lens fabricated with mostly zeroth-order gratings[J]. Optics Letters, 1996, 21(3): 177-179.
|
[16] |
LALANNE P, ASTILEAN S, CHAVEL P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi: 10.1364/OL.23.001081
|
[17] |
ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069. doi: 10.1038/ncomms8069
|
[18] |
YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
|
[19] |
BAYATI E, ZHAN A L, COLBURN S, et al. Role of refractive index in metalens performance[J]. Applied Optics, 2019, 58(6): 1460-1466. doi: 10.1364/AO.58.001460
|
[20] |
YANG J J, FAN J A. Analysis of material selection on dielectric metasurface performance[J]. Optics Express, 2017, 25(20): 23899-23909. doi: 10.1364/OE.25.023899
|
[21] |
JENSEN J S, SIGMUND O, REVIEWS P. Topology optimization for nano‐photonics[J]. Laser & Photonics Reviews, 2011, 5(2): 308-321.
|
[22] |
SELL D, YANG J J, DOSHAY S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752-3757. doi: 10.1021/acs.nanolett.7b01082
|
[23] |
LIAO W P, LIU H L, LIN Y F, et al. I-line photolithographic metalenses enabled by distributed optical proximity correction with a deep-learning model[J]. Optics Express, 2022, 30(12): 21184-21194. doi: 10.1364/OE.456469
|
[24] |
ZHAN A L, COLBURN S, TRIVEDI R, et al. Low-contrast dielectric metasurface optics[J]. ACS Photonics, 2016, 3(2): 209-214. doi: 10.1021/acsphotonics.5b00660
|
[25] |
ELSAWY M M R, GOURDIN A, BINOIS M, et al. Multiobjective statistical learning optimization of RGB metalens[J]. ACS Photonics, 2021, 8(8): 2498-2508. doi: 10.1021/acsphotonics.1c00753
|
[26] |
WEI H M, HU W C, PANG F F. Inverse design of high-performance near-infrared polymer metalens[J]. Acta Optica Sinica, 2024, 44(8): 0822002. (in Chinese). doi: 10.3788/AOS231859
|
[27] |
WU H, YI Y T, ZHANG N, et al. Inverse design broadband achromatic metasurfaces for longwave infrared[J]. Optical Materials, 2024, 148: 114923. doi: 10.1016/j.optmat.2024.114923
|