Citation: | Wang Hao-xing, LIU Jia, WANG Hai-yang, WANG Jun, LI Yuan-hao, YIN Jian-xiong, WAN Shun, DAI Yun-teng, JIA Ping-gang. Metal-sensitive diaphragm fiber optic Fabry-perot pressure sensor with temperature compensation[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0021 |
A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments, such as engine fuel systems, oil and gas wells, and aviation hydraulic systems. The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot (FP) interference cavity. A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement. Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75% full scale (FS) and 0.99% FS at room temperature and 300 °C, respectively, in a pressure range of 0−10 MPa and 0−1.5 MPa. The sensor’s pressure measurement accuracy is 1.7% FS when using the temperature decoupling method. The sensor exhibits good static pressure characteristics, stability, and reliability, providing an effective solution for high-temperature pressure monitoring applications.
[1] |
PULLIAM W J, RUSSLER P M, FIELDER R S. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine engine component testing[J]. Proceedings of SPIE, 2002, 4578: 229-238. doi: 10.1117/12.456079
|
[2] |
REN J, WARD M, KINNELL P, et al. Plastic deformation of micromachined silicon diaphragms with a sealed cavity at high temperatures[J]. Sensors, 2016, 16(2): 204. doi: 10.3390/s16020204
|
[3] |
CHEN Y K, XU Q, ZHANG X Q, et al. Materials and sensing mechanisms for high-temperature pressure sensors: a review[J]. IEEE Sensors Journal, 2023, 23(22): 26910-26924. doi: 10.1109/JSEN.2023.3323318
|
[4] |
MARQUES C A F, POSPORI A, SÁEZ-RODRÍGUEZ D, et al. Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings[J]. IEEE Sensors Journal, 2016, 16(15): 6122-6129. doi: 10.1109/JSEN.2016.2577782
|
[5] |
HAVRELAND A S, PETERSEN S D, ØSTERGAARD C, et al. Micro-fabricated all optical pressure sensors[J]. Microelectronic Engineering, 2017, 174: 11-15. doi: 10.1016/j.mee.2016.12.010
|
[6] |
JIANG X N, KIM K, ZHANG SH J, et al. High-temperature piezoelectric sensing[J]. Sensors, 2014, 14(1): 144-169.
|
[7] |
MAILLAUD F F M, PECHSTEDT R D. High-accuracy optical pressure sensor for gas turbine monitoring[J]. Proceedings of SPIE, 2012, 8421: 8421AF.
|
[8] |
YAO Z, LIANG T, JIA P G, et al. A high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit[J]. Sensors, 2016, 16(6): 913. doi: 10.3390/s16060913
|
[9] |
WANG ZH F, CHEN J, WEI H M, et al. Sapphire Fabry–Perot interferometer for high-temperature pressure sensing[J]. Applied Optics, 2020, 59(17): 5189-5196. doi: 10.1364/AO.393353
|
[10] |
LIU J, JIA P G, FENG F, et al. MgO single crystals MEMS-based fiber-optic fabry–perot pressure sensor for harsh monitoring[J]. IEEE Sensors Journal, 2021, 21(4): 4272-4279. doi: 10.1109/JSEN.2020.3029152
|
[11] |
CAMPANELLA C E, CUCCOVILLO A, CAMPANELLA C, et al. Fibre bragg grating based strain sensors: review of technology and applications[J]. Sensors, 2018, 18(9): 3115. doi: 10.3390/s18093115
|
[12] |
SAHOTA J K, GUPTA N, DHAWAN D, et al. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 2020, 59(6): 060901.
|
[13] |
WANG Q, ZHANG L, SUN CH S, et al. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement[J]. IEEE Sensors Journal, 2008, 8(11): 1879-1883. doi: 10.1109/JSEN.2008.2006253
|
[14] |
ZHAO Q CH, LIU X H, MA L, et al. Optical fiber pressure sensor based on F-P cavity in the oil and gas well[J]. IOP Conference Series: Earth and Environmental Science, 2017, 64: 012007. doi: 10.1088/1755-1315/64/1/012007
|
[15] |
CHENG L, TONG X L, WEI J CH, et al. Highly accurate differential pressure FBG gas flow sensor[J]. Optical Fiber Technology, 2023, 75: 103189. doi: 10.1016/j.yofte.2022.103189
|
[16] |
HU X S, SU D, QIAO X G, et al. Diaphragm-structured fiber-optic pressure sensors for oil downhole applications[J]. IEEE Sensors Journal, 2024, 24(9): 14270-14278. doi: 10.1109/JSEN.2024.3376085
|
[17] |
CHEN H B, CHEN Q Q, WANG W, et al. Fiber-optic, extrinsic Fabry-Perot interferometric dual-cavity sensor interrogated by a dual-segment, low-coherence Fizeau interferometer for simultaneous measurements of pressure and temperature[J]. Optics Express, 2019, 27(26): 38744-38758. doi: 10.1364/OE.382761
|
[18] |
SHAO ZH Q, WU Y L, SUN ZH Q, et al. Excellent repeatability, all-sapphire Fabry-Perot optical Pressure sensor based on wet etching and direct bonding for Harsh Environment Applications[J]. Optics Express, 2021, 29(13): 19831-19838. doi: 10.1364/OE.423753
|
[19] |
SHAO ZH Q, WU Y L, WANG SH, et al. All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching[J]. Optics Express, 2021, 29(3): 4139-4146. doi: 10.1364/OE.417246
|
[20] |
ZHANG Y T, JIANG Y, YANG SH W, et al. Design of high-temperature vacuum fiber optic absolute pressure sensor for near-space vehicles[J]. Journal of Rocket Propulsion, 2024, 50(3): 118-123. (in Chinese). doi: 10.3969/j.issn.1672-9374.2024.03.013
|
[21] |
ZHANG Y T, JIANG Y, YANG SH W, et al. All-sapphire fiber-optic sensor for the simultaneous measurement of ultra-high temperature and high pressure. Optics Express, 2024, 32(8): 14826-14836.
|
[22] |
LI J S, JIA P G, WANG J, et al. Silica-MEMS-based fiber-optic fabry-perot pressure sensor for high-temperature applications[J]. Acta Photonica Sinica, 2022, 51(6): 0606005. doi: 10.3788/gzxb20225106.0606005
|
[23] |
LIANG Y CH, CHEN H T. Design of diaphragm optical fiber pressure sensor based on F-P interference[J]. Journal of Hunan Post and Telecommunication College, 2021, 20(2): 1-3,35. (in Chinese). doi: 10.3969/j.issn.2095-7661.2021.02.001
|
[24] |
CHEN H B, LIU J, ZHANG X X, et al. High-order harmonic-frequency cross-correlation algorithm for absolute cavity length interrogation of white-light fiber-optic Fabry-Perot sensors[J]. Journal of Lightwave Technology, 2020, 38(4): 953-960. doi: 10.1109/JLT.2019.2948214
|
[25] |
ZHANG J Y, ZHANG X X, GUO Z L, et al. Fundamental and high-order cross-correlation combined demodulation method for absolute cavity length measurement of fiber-optic Fabry-Perot sensors[J]. Optical Engineering, 2022, 61(9): 096102.
|
[26] |
KANG J W, CHEN H B, ZHANG X X, et al. Valley-positioning-assisted discrete cross-correlation algorithm for fast cavity length interrogation of fiber-optic Fabry-Perot sensors[J]. Measurement, 2022, 198: 11411.
|