| Citation: | LIU Qiang, JIANG Yu, HU Chun-jie, LU Wen-shu, SUN Yu-dan, LIU Chao, LV Jing-wei, ZHAO Jin, TAI Sheng-nan, YI Zao, CHU Paul K. High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide[J]. Chinese Optics, 2022, 15(1): 101-110. doi: 10.37188/CO.EN.2021-0006 | 
	                | [1] | 
					 BROLO A G. Plasmonics for future biosensors[J]. Nature Photonics, 2012, 6(11): 709-713. doi:  10.1038/nphoton.2012.266 
						
					 | 
			
| [2] | 
					 WANG Z M, SU K, FENG B, et al. Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides[J]. Chinese Optics Letters, 2018, 16(1): 011301. doi:  10.3788/COL201816.011301 
						
					 | 
			
| [3] | 
					 LIANG H, ZHAN Y F, YIN H L. New observation strategy for X-ray pulsar navigation using a single detector[J]. IET Radar,Sonar &Navigation, 2016, 10(6): 1107-1111. 
						
					 | 
			
| [4] | 
					 YU J L, XIANG K, WANG X Y, et al. Video stabilisation based on modelling of motion imaging[J]. IET Image Processing, 2016, 10(3): 177-188. doi:  10.1049/iet-ipr.2015.0321 
						
					 | 
			
| [5] | 
					 YANG H, OU K, CAO G T, et al. Polarization beam splitter with disparate functionality in transmission and reflection modes[J]. Optics Communications, 2019, 443: 104-109. doi:  10.1016/j.optcom.2019.03.022 
						
					 | 
			
| [6] | 
					 XIE Y, CHEN ZH X, YAN J, et al. Combination of surface Plasmon polaritons and subwavelength grating for polarization beam splitting[J]. Plasmonics, 2020, 15(1): 235-241. doi:  10.1007/s11468-019-01032-6 
						
					 | 
			
| [7] | 
					 YANG ZH, CHEN K, WANG CH G, et al. A photonic crystal beam splitter used for light path multiplexing: synergy of TIR and PBG light guiding[J]. Optical and Quantum Electronics, 2020, 52(2): 84. doi:  10.1007/s11082-020-2224-y 
						
					 | 
			
| [8] | 
					 LIU Y CH, CHEN H L, LI SH G, et al. Surface plasmon resonance-induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers[J]. Chinese Physics B, 2017, 26(10): 104211. doi:  10.1088/1674-1056/26/10/104211 
						
					 | 
			
| [9] | 
					 ZHAO H X, XIE J L, LIU J J. An approximate theoretical explanation for super-resolution imaging of two-dimensional photonic quasi-crystal flat lens[J]. Applied Physics Express, 2020, 13(2): 022007. doi:  10.35848/1882-0786/ab6934 
						
					 | 
			
| [10] | 
					 VAN TOAN N, ZHAO D, INOMATA N, et al. Logic gates based on electrically driven nanoelectromechanical switches[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 335-336. doi:  10.1002/tee.22814 
						
					 | 
			
| [11] | 
					 YIN SH, HU F R, CHEN X Y, et al. Ruler equation for precisely tailoring the resonance frequency of terahertz U-shaped metamaterials[J]. Journal of Optics, 2019, 21(2): 025101. doi:  10.1088/2040-8986/aafd86 
						
					 | 
			
| [12] | 
					 SHUAI B B, XIA L, ZHANG Y T, et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity[J]. Optics Express, 2012, 20(6): 5974-5986. doi:  10.1364/OE.20.005974 
						
					 | 
			
| [13] | 
					 RIFAT A A, AHMED R, YETISEN A K, et al. Photonic crystal fiber based plasmonic sensors[J]. Sensors and Actuators B:Chemical, 2017, 243: 311-325. doi:  10.1016/j.snb.2016.11.113 
						
					 | 
			
| [14] | 
					 DE M, SINGH V K. Analysis of a highly sensitive flat fiber plasmonic refractive index sensor[J]. Applied Optics, 2020, 59(2): 380-388. doi:  10.1364/AO.59.000380 
						
					 | 
			
| [15] | 
					 RIFAT A A, MAHDIRAJI G A, SUA Y M, et al. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor[J]. Optics Express, 2016, 24(3): 2485-2495. doi:  10.1364/OE.24.002485 
						
					 | 
			
| [16] | 
					 YAN B, WANG A R, LIU E X, et al. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber[J]. Journal of Physics D:Applied Physics, 2018, 51(15): 155105. doi:  10.1088/1361-6463/aab4ce 
						
					 | 
			
| [17] | 
					 YANG X CH, LU Y, LIU B L, et al. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance[J]. Plasmonics, 2017, 12(2): 489-496. doi:  10.1007/s11468-016-0289-z 
						
					 | 
			
| [18] | 
					 LIU CH, WANG L Y, YANG L, et al. The single-polarization filter composed of gold-coated photonic crystal fiber[J]. Physics Letters A, 2019, 383(25): 3200-3206. doi:  10.1016/j.physleta.2019.07.012 
						
					 | 
			
| [19] | 
					 LIU Q, SUN J D, SUN Y D, et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film[J]. Optical Materials, 2020, 102: 109800. doi:  10.1016/j.optmat.2020.109800 
						
					 | 
			
| [20] | 
					 KIM S, KEE C S, LEE J. Novel optical properties of six-fold symmetric photonic quasicrystal fibers[J]. Optics Express, 2007, 15(20): 13221-13226. doi:  10.1364/OE.15.013221 
						
					 | 
			
| [21] | 
					 LIU CH, WANG J W, WANG F M, et al. Surface Plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings[J]. Optics Communications, 2020, 464: 125496. doi:  10.1016/j.optcom.2020.125496 
						
					 | 
			
| [22] | 
					 WANG G Y, LI SH G, AN G W, et al. Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance[J]. Optical and Quantum Electronics, 2016, 48(1): 46. doi:  10.1007/s11082-015-0346-4 
						
					 | 
			
| [23] | 
					 TONG K, WANG F CH, WANG M T. D-shaped photonic crystal fiber biosensor based on silver-graphene[J]. Optik, 2018, 168: 467-474. doi:  10.1016/j.ijleo.2018.04.119 
						
					 | 
			
| [24] | 
					 MONFARED Y E. Refractive index sensor based on surface plasmon resonance excitation in a d-shaped photonic crystal fiber coated by titanium Nitride[J]. Plasmonics, 2020, 15(2): 535-542. doi:  10.1007/s11468-019-01072-y 
						
					 | 
			
| [25] | 
					 GANGWAR R K, SINGH V K. Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor[J]. Plasmonics, 2017, 12(5): 1367-1372. doi:  10.1007/s11468-016-0395-y 
						
					 | 
			
| [26] | 
					 MOMTAJ M, MOU J R, KAMRUNNAHAR Q M, et al. Open-channel-based dual-core D-shaped photonic crystal fiber plasmonic biosensor[J]. Applied Optics, 2020, 59(28): 8856-8865. doi:  10.1364/AO.400765 
						
					 | 
			
| [27] | 
					 GANGWAR R K, AMORIM V A, MARQUES P V S. High performance titanium oxide coated d-shaped optical fiber plasmonic sensor[J]. IEEE Sensors Journal, 2019, 19(20): 9244-9248. doi:  10.1109/JSEN.2019.2927728 
						
					 | 
			
| [28] | 
					 KAUR V, SINGH S. Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications[J]. Optical Fiber Technology, 2019, 48: 159-164. doi:  10.1016/j.yofte.2018.12.015 
						
					 | 
			
| [29] | 
					 BING P B, WU G F, SUI J L, et al. Double samples synchronous detection sensor based on up-core photonic crystal fiber[J]. Optik, 2020, 224: 165522. doi:  10.1016/j.ijleo.2020.165522 
						
					 | 
			
| [30] | 
					 RIFAT A A, AHMED R, MAHDIRAJI G A, et al. Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR[J]. IEEE Sensors Journal, 2017, 17(9): 2776-2783. doi:  10.1109/JSEN.2017.2677473 
						
					 | 
			
| [31] | 
					 LU J J, LI Y, HAN Y H, et al. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating[J]. Applied Optics, 2018, 57(19): 5268-5272. doi:  10.1364/AO.57.005268 
						
					 | 
			
| [32] | 
					 HUANG T Y. Highly sensitive SPR sensor based on d-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength[J]. Plasmonics, 2017, 12(3): 583-588. doi:  10.1007/s11468-016-0301-7 
						
					 | 
			
| [33] | 
					 WU J J, LI SH G, SHI M, et al. Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance[J]. Optical Fiber Technology, 2018, 43: 90-94. doi:  10.1016/j.yofte.2018.04.006 
						
					 | 
			
| [34] | 
					 LIU Q, SUN J D, SUN Y D, et al. Surface plasmon resonance sensor based on eccentric core photonic quasi-crystal fiber with indium tin oxide[J]. Applied Optics, 2019, 58(25): 6848-6853. doi:  10.1364/AO.58.006848 
						
					 | 
			
| [35] | 
					 LIU Q, SUN J D, SUN Y D, et al. High-sensitivity SPR sensor based on the eightfold eccentric core PQF with locally coated indium tin oxide[J]. Applied Optics, 2020, 59(22): 6484-6489. doi:  10.1364/AO.395605 
						
					 | 
			
| [36] | 
					 MARUYAMA T, FUKUI K. Indium tin oxide thin films prepared by chemical vapour deposition[J]. Thin Solid Films, 1991, 203(2): 297-302. doi:  10.1016/0040-6090(91)90137-M 
						
					 | 
			
| [37] | 
					 WANG J W, LIU CH, WANG F M, et al. Surface plasmon resonance sensor based on coupling effects of dual photonic crystal fibers for low refractive indexes detection[J]. Results in Physics, 2020, 18: 103240. doi:  10.1016/j.rinp.2020.103240 
						
					 | 
			
| [38] | 
					 LI D M, ZHANG W, LIU H, et al. High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength[J]. IEEE Photonics Journal, 2017, 9(2): 6801608. 
						
					 | 
			
| [39] | 
					 LIU CH, WANG J W, JIN X, et al. Near-infrared surface plasmon resonance sensor based on photonic crystal fiber with big open rings[J]. Optik, 2020, 207: 164466. doi:  10.1016/j.ijleo.2020.164466 
						
					 | 
			
| [40] | 
					 AN G W, LI SH G, WANG H Y, et al. Metal oxide-graphene-based quasi-D-shaped optical fiber plasmonic biosensor[J]. IEEE Photonics Journal, 2017, 9(4): 6803909. 
						
					 | 
			
| [41] | 
					 HAQUE E, HOSSAIN M A, NAMIHIRA Y, et al. Microchannel-based plasmonic refractive index sensor for low refractive index detection[J]. Applied Optics, 2019, 58(6): 1547-1554. doi:  10.1364/AO.58.001547 
						
					 | 
			
| [42] | 
					 KAUR V, SINGH S. Design of photonic crystal fiber surface plasmon resonance sensor with external channel approach[C]. Proceedings of the Future Technologies Conference (FTC), Springer, 2019: 841-846. 
						
					 |