留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体极紫外光刻光源

窦银萍 孙长凯 林景全

窦银萍, 孙长凯, 林景全. 激光等离子体极紫外光刻光源[J]. 中国光学(中英文), 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020
引用本文: 窦银萍, 孙长凯, 林景全. 激光等离子体极紫外光刻光源[J]. 中国光学(中英文), 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020
DOU Yin-ping, SUN Chang-kai, LIN Jing-quan. Laser-produced plasma light source for extreme ultraviolet lithography[J]. Chinese Optics, 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020
Citation: DOU Yin-ping, SUN Chang-kai, LIN Jing-quan. Laser-produced plasma light source for extreme ultraviolet lithography[J]. Chinese Optics, 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020

激光等离子体极紫外光刻光源

基金项目: 

国家自然科学基金资助项目(No.61178022);吉林省科技厅资助项目(No.20111812)

详细信息
    作者简介:

    窦银萍 (1987—) ,女,吉林长春人,博士研究生,2010年于长春理工大学获得学士学位,主要从事激光等离子体极紫外光刻光源方面的研究。E-mail:douzi714@126.com;孙长凯(1979—),男,辽宁辽阳人,博士,讲师,2002年于辽宁师范大学获得学士学位,2005年、2010年于吉林大学分别获得硕士、博士学位,主要从事量子相干控制,激光等离子体极紫外光刻光源等方面的研究。E-mail:changkaisun@cust.edu.cn;林景全(1966—),男,吉林人,博士,教授,博士生导师,1999年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事飞秒激光与物质相互作用、极紫外光刻关键技术、光辐射电子显微术等方面的研究。E-mail: linjingquan@cust.edu.cn

    窦银萍 (1987—) ,女,吉林长春人,博士研究生,2010年于长春理工大学获得学士学位,主要从事激光等离子体极紫外光刻光源方面的研究。E-mail:douzi714@126.com;孙长凯(1979—),男,辽宁辽阳人,博士,讲师,2002年于辽宁师范大学获得学士学位,2005年、2010年于吉林大学分别获得硕士、博士学位,主要从事量子相干控制,激光等离子体极紫外光刻光源等方面的研究。E-mail:changkaisun@cust.edu.cn;林景全(1966—),男,吉林人,博士,教授,博士生导师,1999年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事飞秒激光与物质相互作用、极紫外光刻关键技术、光辐射电子显微术等方面的研究。E-mail: linjingquan@cust.edu.cn

    窦银萍 (1987—) ,女,吉林长春人,博士研究生,2010年于长春理工大学获得学士学位,主要从事激光等离子体极紫外光刻光源方面的研究。E-mail:douzi714@126.com;孙长凯(1979—),男,辽宁辽阳人,博士,讲师,2002年于辽宁师范大学获得学士学位,2005年、2010年于吉林大学分别获得硕士、博士学位,主要从事量子相干控制,激光等离子体极紫外光刻光源等方面的研究。E-mail:changkaisun@cust.edu.cn;林景全(1966—),男,吉林人,博士,教授,博士生导师,1999年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事飞秒激光与物质相互作用、极紫外光刻关键技术、光辐射电子显微术等方面的研究。E-mail: linjingquan@cust.edu.cn

    通讯作者:

    林景全

  • 中图分类号: TN305.7;O539

Laser-produced plasma light source for extreme ultraviolet lithography

  • 摘要: 研究并讨论了下一代光刻的核心技术之一激光等离子体极紫外光刻光源。简要介绍了欧美和日本等国极紫外光刻技术的发展概况,分析了新兴的下一代13.5 nm极紫外光刻光源的现状,特别讨论了国内外激光等离子体极紫外光刻光源的现状,指出目前其存在的主要问题是如何提高光源的转化效率和减少光源的碎屑。文中同时概述了6.x nm(6.5~6.7 nm)极紫外光刻光源的最新研究工作。最后,介绍了作者所在研究小组近年来在极紫外光源和极紫外光刻掩模缺陷检测方面开展的研究工作。

     

  • [1] 张福昌,李艳秋. EUV光刻中激光等离子体光源的发展[J]. 微细加工技术,2006(5):1-7. ZHANG F CH,LI Y Q. Development of laser produced plasma source for EUV lithograghy[J]. Microfabrication Technology,2006(5):1-7.(in Chinese) [2] 王占山. 极紫外光刻给光学技术带来的挑战[J]. 红外与激光工程,2006(增2):151-156. WANG ZH SH. Extreme ultraviolet lithograghy chanlleges to optical technology[J]. Infrared and Laser Eng.,2006(Supl2):151-156.(in Chinese) [3] PARKER A. Extreme ultraviolet lithography imaging the future. lawrence livermore national laboratory[EB/OL].(1999-11-01).[2012-07-11].http://www.11n1.gov/str/sween.htm. [4] Industry defining EUV source[EB/OL].[2012-07-11].http://www.cymer.com/hvm_1. [5] BAJT S,ALAMEDA J,AND SPILLER E. Improved reflectance and stability of Mo/Si multilayers[J]. SPIE,2001,4506:65-246. [6] International Workshops on EUV Sources,2010 [C]//International workshops on EUV source,Dublin,Ireland,Nov.13-15,2010. [7] MIZOGUCHI H,ABE H,ISHIHARA T,et al.. First generation laser-produced plasma source system for HVM EUV lithography[J]. SPIE,2010,7636:763608. [8] FOMENKOV I V,BRANDT D C,BYKANOV N B,et al.. Laser-produced plasma light source for EUVL[J]. SPIE,2010,7271:727138. [9] ASML lithography roadmap[EB/OL].[2012-07-11].http://www.asml.com. [10] SHIMOURA A,AMANO S,MIYAMOTO S,et al.. X-ray generation in cryogenic targets irradiated by 1 μm pulse laser[J]. Appl. Phys. Lett.,1998,72:164-166. [11] SCHRIEVER G,MAGER S,NAWEED A,et al.. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy[J]. Appl. Opt.,1998,37:1243-1248. [12] SHIMADA Y,NISHIMURA H,NAKAI M,et al.. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams[J]. Appl. Phys. Lett.,2005,86:105-501. [13] UENO Y,SOUMAGNE G,SUMITANI A,et al.. Enhancement of extreme ultraviolet emission from a CO2 laser-produced sn plasma using a cavity target[J]. Appl. Phys. Lett.,2007,91:231501. [14] HARILAL S S,TILLACK M S,O'SHAY B,et al.. Extreme ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets[J]. Opt. Lett.,2006,31:1549-1551. [15] O'SULLIVAN G D,CUMMINGS A,DUFFY G,et al.. Optimizing an EUV source for 13.5 nm[J]. SPIE, 2004,5196:273-281. [16] TOSHIHISA T,TATSUYA A,YOSHIFUMI U,et al.. Use of tin as a plasma source material for high conversion efficiency[J]. SPIE,2003,5037:147-155. [17] TAO Y,NISHIMURA H,OKUNO T,et al.. Dynamic imaging of 13.5 nm extreme ultraviolet emission from laser-production Sn plasmas[J]. Appl. Phys. Lett.,2005,87:241502. [18] JANSSON P A C,HANSSON B A M,HEMBERG O,et al.. Liquid-tin-jet laser-plasma extreme ultraviolet generation[J]. Appl. Phys. Lett.,2004,84:2256-2258. [19] KAKU M,SUETAKE S,SENBA Y,et al.. Deposited debris characteristics and its reduction of a laser-produced plasma extreme ultraviolet source using a colloidal tin dioxide jet target[J]. Appl. Phys. Lett.,2008,92:181503. [20] WHITE J,DUNNE P,HAYDEN P,et al.. Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength[J]. Appl. Phys. Lett.,2007,90:181502. [21] ANDO T,FUJIOKA S,NISHIMURA H,et al.. Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas[J]. Appl. Phys. Lett.,2006,89:151501. [22] HARILAL S S,COONS R W,HOUGH P,et al.. Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas[J]. Appl. Phys. Lett.,2009,95:221501. [23] LETARDI T,LO D,ZHENG C E. Particle dynamics of debris produced during laser-plasma soft X-ray generation[J]. J. Appl. Physics,2001,89(2):1458-1462. [24] HIGASHIGUCHI T,RAJYAGURU C,DOJYO N,et al.. Debris characteristics of a laser-produced tin plasma for extreme ultraviolet source[J]. Rev. Scientific Instruments,2005,76:126102. [25] NAKAMURA D,TAMARU K,AKIYAMA T,et al.. Investigation of debris dynamics from laser-produced tin plasma for EUV lithography light source[J]. Appl. Phys. A,2008,92:767-772. [26] BOLLANTI S,BONFIGLI F,BURATTINI E,et al.. High-efficiency clean EUV plasma source at 10~30 nm,driven by a long-pulse-width excimer laser[J]. Appl. Phys. B.,2003,76:277-284. [27] HARILALB S S,O'SHAY,TAO Y,et al.. Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects[J]. Appl. Phys. B.,2007,86:547-553. [28] The center X-ray optics[EB/OL].[2012-07-11].http://www-cxro.lbl.gov/optical_constants/gastrn2.html. [29] TAKAHASHI A,NAKAMURA D,TAMARU K,et al.. Emission characteristics of debris from CO2 and Nd: YAG laser-produced tin plasmas for extreme ultraviolet lithography light source[J]. Appl. Phys. B.,2008,92:73-77. [30] NAMBA S,FUJIOKA S,NISHIMURA H,et al.. Spectroscopic study of debris mitigation with minimum-mass Sn laser plasma for extreme ultraviolet lithography[J]. Appl. Phys. Lett.,2006,88:171503. [31] HIGASHIGUCHI T,KAWASAKI K,SASAKI W,et al.. Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses[J]. Appl. Phys. Lett.,2006,88:161502. [32] HIGASHIGUCHI T,DOJYO N,HAMADA M,et al.. Low-debris,efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide(SnO2) nanoparticles[J]. Appl. Phys. Lett.,2006,88:201503. [33] TAO Y,TILLACK M S. Mitigation of fast ions from laser-produced sn plasma for an extreme ultraviolet lithography source[J]. Appl. Phys. Lett.,2006,89:111502. [34] 林景全,陈波,尼启良,等. 激光等离子体软X射线源靶材的选择及特性[J]. 强激光与粒子束,1998,10(3):429-432. LIN J Q,CHEN B,NI Q L,CAO J L,et al.. Target material choice and its characteristic of laser-produced plasma source[J]. High Power Laser and Particle Beams,1998,10(3):429-432.(in Chinese) [35] 朱新旺,王新兵,傅焰峰,等. CO2激光等离子体极紫外光源收集镜研究[J]. 激光技术,2010,34(6):725-728. ZHU X W,WANG X B,FU Y F,et al.. Research of collector mirrors of CO2 laser produced plasma EUV source[J]. Laser Technology,2005,34(6):725-728.(in Chinese) [36] 程元丽,李思宁,王琪,等. 激光等离子体和气体放电EUV光刻光源[J]. 激光技术,2004,28(6):561-564. CHENG Y L,LI S N,WANG Q. Extreme ultraviolet source of microlithography based on laser induced plasma and discharge induced plasma[J]. Laser Technology,2004,28(6):561-564.(in Chinese) [37] DUNNEP, CUMMINS T,WHITE J,et al.. Laser-produced terbium and gadolinium plasmas as EUVL source at 6.5~6.7 mm[C]//International Workshop on EUV Source 2010,Dublin,Ireland,Nov.13-15,2010. [38] PLATONOV Y. Status of EUVL multilayer optics deposition at RIT[C]//International Workshop on EUV Source 2010,P31,Dublin,Ireland,Nov.13-15,2010. [39] BENSCHOP J. EUV:Status and challenges ahead[C]//Proceedings of the 2010 International Workshop on EUVL,Maui,HI,Jun.24,2010. [40] SASAKI A,NISHIHARA K,SUNAHARA A,et al.. Theoretical investigation of the spectrum and conversion efficiency of short wavelength extreme-ultraviolet light sources based on terbium plasmas[J]. Appl. Phys. Lett.,2010,97:231501. [41] CARROLL P K,O'SULLIVAN G. Ground-state configurations of ionic species I through XVI for Z=57-74 and the interpretation of 4d-4f emission resonances in laser-produced plasmas[J]. Phys. Rev. A.,1982,25:275-286. [42] GWYN C W,STULEN R,SWEENEY D,et al.. Extreme ultraviolet lithography[J]. Vac. Sci. Technol. B,1998,16:3142-3419. [43] FUJIOKA S,NISHIMURA H,NISHIHARA K,et al.. Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas[J]. Phys. Rev. Lett.,2005,95:235004. [44] TANAKA H,MATSUMOTO A,AKINAGA K,et al.. Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas[J]. Appl. Phys. Lett.,2005,87:041503. [45] HAYDEN P,CUMMINGS A,MURPHY N,et al.. 13.5 nm extreme ultraviolet emission from tin based laser produced plasma sources[J]. J. Appl. Phys.,2006,99:093302. [46] FUJIOKA S,SHIMOMURA M,SHIMADA Y,et al.. Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme1ultraviolet light source production[J]. Appl. Phys. Lett.,2008,92:241502. [47] OTSUKA T,KILBANE D,WHITE J,et al.. Rare-earth plasma extreme ultraviolet sources at 6.5-6.7 nm[J]. Appl. Phys. Lett.,2010,97:111503. [48] CUMMINS T,OTSUKA T,YUGAMI N,et al.. Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma[J]. Appl. Phys. Lett.,2012,100:06118. [49] OTSUKA T,KILBANE D,HIGASHIGUCHI T,et al.. Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources[J]. Appl. Phys. Lett.,2010,97:231503. [50] HIGASHIGUCHI T,OTSUKA T,YUGAMI N,et al.. Extreme ultraviolet source at 6.7 nm based on a low-density plasma[J]. Appl. Phys. Lett.,2011,99:191502. [51] COLOMBANT D,TONON G F. X-ray emission in laser-produced plasmas[J]. J. Appl. Phys.,1973,44:3524-3537. [52] LIN J Q,TOSHIHISA T. Supply of a particle-included droplet as laser plasma target for extreme ultraviole emission[J]. J. Phys. D. Appl. Phys.,2009,42:045204. [53] LIN J Q,TOSHIHISA T. Enhancement of EUV emission intensity from particles in a droplet by exploding the droplet[J]. J. Phys. D. Appl. Phys.,2009,42:155203. [54] SUN Y B,LIN J Q,GAO X,et al.. Characteristics of ion debris from laser-produced tin plasma and mitigation of energetic ions by ambient gas[J]. Sci China-Phys Mech Astron,2012,55:392-395. [55] LIN J Q,WEBER N,MAUL J,et al.. At-wavelength inspection of sub-40 nm defects in extreme ultraviolet lithography mask blank by photoemission electron microscopy[J]. Optics Lett.,2007,32(13):1875-1877. [56] LIN J Q,WEBER N,ESCHE M,et al.. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy[J]. Optics Express,2008,16(20):15343-15352.
  • 加载中
计量
  • 文章访问数:  5231
  • HTML全文浏览量:  806
  • PDF下载量:  1095
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-11
  • 修回日期:  2012-12-13
  • 刊出日期:  2013-02-10

目录

    /

    返回文章
    返回