留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光管理在晶体硅电池中的应用

丁武昌

丁武昌. 光管理在晶体硅电池中的应用[J]. 中国光学(中英文), 2013, 6(5): 717-728. doi: 10.3788/CO.20130605.0717
引用本文: 丁武昌. 光管理在晶体硅电池中的应用[J]. 中国光学(中英文), 2013, 6(5): 717-728. doi: 10.3788/CO.20130605.0717
DING Wu-chang. Light management in crystalline silicon solar cells[J]. Chinese Optics, 2013, 6(5): 717-728. doi: 10.3788/CO.20130605.0717
Citation: DING Wu-chang. Light management in crystalline silicon solar cells[J]. Chinese Optics, 2013, 6(5): 717-728. doi: 10.3788/CO.20130605.0717

光管理在晶体硅电池中的应用

基金项目: 

国家自然科学基金资助项目(No.11104319)

详细信息
    作者简介:

    丁武昌(1981-),男,山东日照人,博士,副研究员,2004年于中国科学技术大学获得学士学位,2009年于中国科学院获得博士学位,主要从事高效晶体硅电池的研究,研究方向包括晶体硅电池光管理以及基于晶体硅的异质结电池关键技术。E-mail:dingwuchang@ime.ac.cn

    通讯作者:

    丁武昌

  • 中图分类号: TM914.41

Light management in crystalline silicon solar cells

  • 摘要: 光管理是提高晶体硅太阳能电池光吸收和短路电流(Jsc)进而提高转换效率的重要因素之一。本文回顾了最常见的光管理方式,包括表面抗反射、散射以及陷光等。为了降低晶体硅电池的表面反射损失,开发了多种表面抗反射结构。例如,仿生蛾眼结构利用渐变折射率实现了宽光谱低反射率,其表面反射率可达1%以下。 随着晶体硅电池衬底减薄,光管理要求更加严格,除了在更宽波长范围内达到超低反射率外,还需要在更高的入射角范围内实现低反射率。此外,利用前表面散射以及背表面陷光结构提高红外光的吸收光程对于晶体硅电池特别是薄衬底晶体硅电池的有效光吸收具有重要意义。

     

  • [1] FISCHER M,METZ A,RAITHEL S. Semi international technology roadmap for photovoltaics(ITRPV)-Challenges in c-Si technology for suppliers and manufacturers[C]//27th European Photovoltaic Solar Energy Conference and Exhibition,Sept.22-23,2012,Frankfurt,Germany,2012. [2] DOU B F,JIA R,LI H F,et al.. Rear surface protection and front surface bi-layer passivation for silicon nanostructure-textured solar cells[J]. J. Physics D:Applied Physics,2013,46:025101. [3] CHEN CH,JIA R,LI H F,et al.. Electrode-contact enhancement in silicon nanowire-array-textured solar cells[J]. Appl. Phys. Lett.,2011,98:143108. [4] ZHANG Y B,PAN M,CHENG X,et al.. Numerical simulation for crystalline silicon solar cells[J]. Chinese J. Luminescence,2012,33(6):660-664.(in Chinese) [5] MACLEOD H A. Thin-Film Optical Filters[M]. 3rd. ed. Bristal. Philadelphia: IOP Publishing Ltd,2006. [6] DING W CH,JIA R,CUI D M. Potential application of silicon-rich-nitride films in silicon solar cells[C]//27th European Photovoltaic Solar Energy Conference and Exhibition,Sept.22-23,2012,Frankfurt,Germany,2012. [7] DING W CH,JIA R,CUI D M,et al.. Light trap design for silicon solar cells with ultra-thin substrate[C]//39th IEEE Photovoltaic Specialist Conference,Jun 16-21,2013,Tampa,FL,USA,2013. [8] SPINELLI P,VERSCHUUREN M A,POLMAN A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators[J]. Nature Communications,2012,3:692. [9] CHHAJED S,SCHUBERT M F,KIM J K,et al.. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics[J]. Appl. Phys. Lett.,2008,93:251108. [10] XI J Q,SCHUBERT M F,KIM J K,et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nature Photonics,2007,1:176-179. [11] KUO M L,POXSON D J,KIM Y S,et al.. Realization of a near-perfect antireflection coating for silicon solar energy utilization[J]. Optics Lett.,2008,33:2527-2529. [12] NAYAK B K,LYENGAR V V,GUPTA M C. Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures[J]. Progress in Photovoltaics,2007,19:631-639. [13] BISWAS R,XU CH. Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit[J]. Opt. Express,2011,19:664-672. [14] NISHIOKA K,SUETO T,SAITO N. Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized particle[J]. Appl. Surface Science,2009,255:9504-9507. [15] PENG K Q,LU A J,ZHANG R Q,et al.. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching[J]. Advanced Functional Materials,2008,18:3026-3055. [16] WAGNER R S,ELLIS W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett.,1964,4:89-90. [17] CHEN Q,HUBBARD G,SHIELDS P A,et al. Broadband moth-eye antireflection coatings fabricated by low cost nanoimprinting[J]. Appl. Phys. Lett.,2009,94:263118. [18] KANAMORI Y,HANE K,SAI H,et al.. 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask[J]. Appl. Phys. Lett.,2001,78:142. [19] SAI H,FUJII H,ARAFUNE K,et al.. Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks[J]. Appl. Phys. Lett.,2006,88:201116. [20] KIM Y CH,DO Y R. Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography:moth-eye lighting[J]. Opt. Express,2005,13:1598-1603. [21] LI X CH,LI J SH,CHEN T,et al.. Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications[J]. Nanoscale Research Lett.,2010,5:1721-1726. [22] WANG K X Z,YU Z F,LIU V,et al.. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings[J]. Nano Letters,2012,12:1616-1619. [23] TSAI M A,TSENG P CH,CHEN H CH,et al.. Enhancement conversion efficiency of a crystalline silicon solar cell with frustum nanorod arryas[J]. Opt. Express,2011,19:28-34. [24] HUANG Z,FANG H,ZHU J. Fabrication of silicon nanowoire arrays with controlled diameter, length, and density[J]. Advance Materials,2007,19:744. [25] CHOI W K,LIEW T H,DAWOOD M K. Synthesis of nanofin arrays using interference lithography and catalytic etching[J]. Nano Letters,2008,8:3799. [26] HUANG ZH P,GEYER N,WRENER P,et al.. Metal-assisted chemical etching of silicon: a review[J]. Advanced Materials,2011,23:285-308. [27] PENG K Q,ZHANG M L,LU A J,et al. Ordered nanowire arrays via nanospere lithography and metal-induced etching[J]. Appl. Phys. Lett.,2007,90:163123. [28] YUE H H,JIA R,CHEN CH,et al.. Antireflection properties and solar cell application of silicon nanostructures[J]. J. Vacuum Science and Technology B,2011,29:1071-1023. [29] GRZELA G,HOURLIER D,RIVAS J G. Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires:a Mie scattering effective medium[J]. Physics Review B,2012,86:045305. [30] BODEN S A,BAGNALL D M. Tunable reflection minima of nanostructured antireflective surfaces[J]. Appl. Phys. Lett.,2008,93:133108. [31] GREEN M A. Lambertian light trapping in textured solar cells and light-emitting diodes:analytical solutions[J]. Progress in Photovoltaics:Research and Appl.,2002,10:235-241. [32] LEI J G,LIU T H,LIN J Q,et al.. New applications of surface plasmon polaritons[J]. Chinese J. Optics and Appl. Optics,2010,3:432-439. [33] PILLAI S,CATCHPOLE K R,TRUPKE T,et al.. Surface plasmon enhanced silicon solar cells[J]. J. Appl. Phys.,2007,101:093105. [34] MATHEU P,LIM S H,DERKACS D,et al.. Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices[J]. Appl. Phys. Lett.,2008,93:113108. [35] SHEN H J,LU H D,CHENG X ZH. Back reflectors of thin-film silicon solar cells consisting of one-dimensional diffraction gratings and one-dimensional photonic crystal[J]. Chinese J. Luminescence,2012,33(6):633-639.(in Chinese) [36] HEINE C,MORF R H. Submicrometer gratings for solar energy applications[J]. Appl. Optics,1995,34:2476-2482. [37] ZENG L,YI Y,HONG C,et al.. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Appl. Phys. Lett.,2006,89:111111. [38] BERK F J,POLMAN A,CATCHPOLE K R. Tunable light trapping for solar cells using localized surface plasmons[J]. J. Appl. Phys.,2009,105:114310. [39] VOGT M R,ALTERMATT P P,BRENDEL R. Optimization of metallic nanoparticles for plasmon-enhanced scattering at the rear of c-Si solar cells[C]//27th European Photovoltaic Solar Energy conference and Exhibition,Sept.22-23,2012,Frankfurt,Germany,2012.
  • 加载中
计量
  • 文章访问数:  2302
  • HTML全文浏览量:  299
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-15
  • 修回日期:  2013-09-13
  • 刊出日期:  2013-10-10

目录

    /

    返回文章
    返回