[1] O'REGAN B, GRTZEL M. A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Lett. Nature, 1990, 353:737-740.
[2] 李祥, 文尚胜, 姚日晖. 硅基有机太阳能电池光学性能分析[J]. 发光学报, 2012, 33(3):286-293. LI X, WEN SH SH, YAO R H. Analysis of optical performance for organic solar cell on Si substrate[J]. Chinese J. Luminescence, 2012, 33(3):286-293.(in Chinese)
[3] YELLA A, LEE H W, TSAO H N, et al.. Porphyrin-sensitized solar cells with cobalt(Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056):629-634.
[4] YANG X B, LIU G X, ALEXANDER A, et al.. Triple-mode single-transistor graphene amplifier and its applications[J]. ACS Nano, 2010, 4(10):5532-5538.
[5] WANG Y, SHI Z Q, HUANG Y, et al.. Supercapacitor devices based on graphene materials[J]. J. Physical Chem. C, 2009, 113(30):13103-13107.
[6] SUN S R, GAO L, LIU Y Q. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation[J]. Appl. Phys. Lett., 2010, 96(8):083113.
[7] PARK H, HOWDEN R M, BARR M C, et al.. Organic solar cells with graphene electrodes and vapor printed poly(3, 4-ethylenedioxythiophene) as the hole transporting layers[J]. Acs Nano, 2012, 6(7):6370-6377.
[8] LEE S, YEO J S, JI Y, et al.. Flexible organic solar cells composed of P3HT∶ PCBM using chemically doped graphene electrodes[J]. Nanotechnology, 2012, 23(34):344013.
[9] 郭颂, 杜晓刚, 刘晓云, 等. 氧化石墨烯作为共蒸镀掺杂材料在OLED中的应用[J]. 发光学报, 2013, 34(5): 595-599. GUO S, DU X G, LIU X Y, et al.. Graphene oxide as doping material for assembling OLEDs via thermal co-evaporation with NPB and Alq3[J]. Chinese J. Luminescence, 2013, 34(5):595-599.(in Chinese)
[10] 冯德军, 黄文育, 纪鹏宇, 等. 基于石墨烯可饱和吸收体的掺铒光纤环形腔脉冲激光器[J]. 光学 精密工程, 2013, 21(5):1097-1101. FENG D J, HUANG W Y, JI P Y, et al.. Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber[J]. Opt. Precision Eng., 2013, 21(5):1097-1101.(in Chinese)
[11] 安楠, 白浪, 李小俊, 等. 室温下石墨烯的霍尔效应实验研究[J]. 发光学报, 2013, 34(1):45-48. AN N, BAI L, LI X J, et al. Experimental research on hall effect of graphene at room-temperature[J]. Chinese J. Luminescence, 2013, 34(1):45-48.(in Chinese)
[12] LI Z Y, AKHTAR M S, KUK J H, et al.. Graphene application as a counter electrode material for dye-sensitized solar cell[J]. Mater. Lett., 2012, 86:96-99.
[13] 李晓冬. 高性能染料敏化太阳能电池的制备与研究[D].上海:华东师范大学, 2011. LI X D. Preparation and investigation of high-performance dye-sensitized solar cells[D]. Shanghai:East China Normal University, 2011.(in Chinese)
[14] ZHANG D W, LI X D, CHEN S, et al.. Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells[J]. J. Solid State Electrochem., 2010, 14(9):1541-1546.
[15] 黄光胜, 阮晓莉, 竹怀君. 基于不同浓度铂对电极的染料敏化太阳能电池的性能研究[J]. 功能材料, 2011, 2(42):318-321. HUANG G SH, RUAN X L, ZHU H J. Performances characteristics of dye-sensitized solar cells based on counter electrodes with different Pt concentration[J]. Functional Mater., 2011, 2(42):318-321.(in Chinese)
[16] 王桂强, 禚淑萍. 染料敏化太阳电池Pt_MC对电极的制备及性能[J]. 太阳能学报, 2012, 33(5):811-815. WANG G Q, ZHUO SH P. Preparation and characteristics of Pt/MC counter electrode for dye-sensitized solar cells[J]. Acta Energiae Solaris Sinica, 2012, 33(5):811-815.(in Chinese)
[17] 马换梅, 田建华, 刘懿平. 染料敏化太阳能电池低铂对电极的制备和性能[J]. 化学工业与工程, 2011, 28(6):1-5. MA H M, TIAN J H, LIU Y P. Preparatioin and characterization of low Pt loading counter electrode for DSSCs[J]. Chem. Ind. Eng., 2011, 28(6):1-5.(in Chinese)
[18] YU W W, ZHANG Q H, SHI G Y, et al.. Preparation of Pt-loaded TiO2 nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties[J]. J. Inorganic Mater., 2011, 26(7):747-752.
[19] XIAO Y M, WU J H, CHENG C X, et al.. Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells[J]. Chinese Sci. Bull., 2012, 57(18):2329-2334.
[20] GONG F, ZHOU G, WANG ZH SH. Progress in research on counter electrode materials of dye-sensitized solar cells[J]. Chinese Sci. Bull.(Chinese Version), 2013, 58(4):294.
[21] ZHU G, PAN L K, LU T, et al.. Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells[J]. J. Mater. Chem., 2011, 21(38):14869-14875.
[22] MEI X G, CHO S J, OUYANG J Y. High-performance dye-sensitized solar cells with gel-coated binder-free single-walled carbon nanotubefilms as counter electrode[J]. Nanotechnology, 2011, 21(39):395202.
[23] ZHANG D W, LI X D, CHEN S, et al.. Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells[J]. J. Solid State Electrochem., 2010, 14(9):1541-1546.
[24] YEN CH Y, LIN Y F, LIAO SH H, et al.. Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells[J]. Nanotechnology, 2008, 19(37):375305-375313.
[25] CHANG L H, HSIEH C K, HSIAO M C, et al.. A graphene-multi-walled carbon nanotube hybrid supported on oxide as a counter electrode of dye-sensitized solar cells[J]. J. Power Sources, 2013, 222:518-525.
[26] CHA S I, KOO B K, SEO S H, et al.. Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls[J]. J. Mater. Chem., 2010, 20(4):659-662.
[27] 张永昌, 林红, 李建保. 取向多壁碳纳米管的制备及其在染料敏化太阳能电池中的应用[J]. 硅酸盐学报, 2011, 39(10):1599-1602. ZHANG Y CH, LIN H, LI J B. Synthesis of oriented multi-walled carbon nanotubes and application in dye-sensitized solar cells[J]. J. Chinese Ceramic Society, 2011, 39(10):1599-1602.(in Chinese)
[28] 冷利民, 梁春杰, 庞起. TiO2纳米管阵列电极染料敏化太阳能电池[J]. 功能材料, 2010, 41(12): 2174-2177. LENG L M, LIANG CH J, PANG Q. TiO2 nanotube arrays in dye-sensitized solar cells[J]. Functional Materials, 2010, 41(12):2174-2177.(in Chinese)
[29] VEERAPPAN G, BOJAN K, RHEE S W. Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2011, 3(3):857-862.
[30] CHEN J K, LI K X, LUO Y H, et al.. A flexible carbon counter electrode for dye-sensitized solar cells[J]. Carbon, 2009, 47(11):2704-2708.
[31] HUANG H, ZHAO B, JIANG P, et al.. Flexible counter electrodes based on mesoporous carbon aerogel for high-performance dye-sensitized solar cells[J]. J. Phys. Chem. C, 2011, 115:22615 22621.
[32] YEH M H, SUN C L, SU J S, et al.. A low-cost counter electrode of ITO glass coated with a graphene/Nafion(R) composite film for use in dye-sensitized solar cells[J]. Carbon, 2012, 50(11):4192-4202.
[33] TSAI T H, CHIOU S C, CHEN S M. Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode[J]. International J. Electrochemical Science, 2011, 6(8):3333-3343.
[34] ROY-MAYHEW J D, BOSCHLOO G, HAGFELDT A, et al.. Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells[J]. Acs Appl. Materials Interfaces, 2012, 4(5):2794-2800.
[35] BAJPAI R, ROY S, KUMAR P, et al.. Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells[J]. Acs Appl. Materials Interfaces, 2011, 3(10):3884-3889.
[36] LEE K S, LEE Y, L J Y, et al.. Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes[J]. Chemsuschem, 2012, 5(2):379-382.
[37] AHMAD I, KHAN U, GUN'KO Y K. Graphene, carbon nanotube and ionic liquid mixtures: towards new quasi-solid state electrolytes for dye sensitised solar cells[J]. J. Mater. Chem., 2011, 21(42):16990-16996.
[38] GUN J, KULKARNI S A, XIU W, et al.. Graphene oxide organogel electrolyte for quasi solid dye sensitized solar cells[J]. Electrochem. Communications, 2012, 19:108-110.
[39] AKHTAR M S, KWON S, STADLER F J, et al.. Yang, High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes[J]. Nanoscale, 2013, 5:5403 5411.
[40] WAN L, WANG S M, WANG X B, et al.. Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells[J]. Solid State Sciences, 2011, 13(2):468-475.
[41] YU D SH, NAGELLI E, DU F, et al.. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. J. Phys. Chem. Lett., 2010, 1(14):2165-2173.
[42] SHAO Y Y, ZHANG SH, ENGELHARD M H, et al.. Nitrogen-doped graphene and its electrochemical applications[J]. J. Mater. Chem., 2010, 20(35):7491-7496.
[43] YANG S B, FENG X L, WANG X C, et al.. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie-International Edition, 2011, 50(23):5339-5343.
[44] WANG P, NABAE Y, OKAJIMA T, et al.. Kinetics of oxygen reduction reaction on carbon alloy catalysts[J]. Electrochem. Society, 2011, 2:242.
[45] WANG G Q, FANG Y Y, LIN Y, et al.. Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells[J]. Materials Research Bull., 2012, 47(12):4252-4256.
[46] XUE Y H, LIU J, CHEN H, et al.. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells[J]. Angewandte Chemie-International Edition, 2012, 51(48): 12124-12127.
[47] YEN M Y, HSIEN C K, TENG C C, et al.. Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes[J]. Rsc Advances, 2012, 2(7):2725-2728.
[48] ZHENG H Q, NEO C Y, MEI X G, et al.. Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(29):14465-14474.
[49] NEO C Y, OUYANG J Y. Graphene oxide as auxiliary binder for TiO2 nanoparticle coating to more effectively fabricate dye-sensitized solar cells[J]. J. Power Sources, 2013, 222:161-168.
[50] ZHANG D W, LI X D, LI H B, et al.. Graphene-based counter electrode for dye-sensitized solar cells[J]. Carbon, 2011, 49(15):5382-5388.
[51] FAN J J, LIU S W, YU J G. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films[J]. J. Materials Chem., 2012, 22(33):17027-17036.
[52] HE Z M, GUAI G H, LIU J, et al.. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells[J]. Nanoscale, 2011, 3(11):4613-4616.
[53] LI Y, WANG G F, PAN K, et al.. NaYF4∶ Er3+/Yb3+-graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(38):20381-20386.
[54] PARK J H, SEO S W, KIM J H, et al.. Improved efficiency of dye-sensitized solar cell using graphene-coated Al2O3-TiO2 nanocomposite photoanode[J]. Molecular Crystals and Liquid Crystals, 2011, 538:285-291.
[55] YANG N L, ZHAI J, WANG D, et al.. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. Acs Nano, 2010, 4(2):887-894.
[56] 向鹏. 染料敏化太阳能电池光阳极研究[D].武汉, 华中科技大学, 2012. XIANG P. The research on photo-anodes of dye-sensitized solar cells[D]. Wuhan:Huazhong University of Science and Technology, 2012.(in Chinese)
[57] 田永书. 染料敏化太阳能电池光阳极的优化[D].重庆:重庆大学, 2012. TIAN Y SH. The optimization of photoanode of dye-sensitized solar cells[D]. Chongqing:Chongqing University, 2012.(in Chinese)
[58] YEN M Y, HSIAO M C, LIAO S H, et al.. Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells[J]. Carbon, 2011, 49(11):3597-3606.
[59] TANG Y B, LEE C S, XU J, et al.. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application[J]. ACS Nano, 2010, 4(6):3482-3488.
|