留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池

苏彦勋 柯沅锋 蔡士良 姚芊瑜 徐嘉妘 龚柏谚

苏彦勋, 柯沅锋, 蔡士良, 姚芊瑜, 徐嘉妘, 龚柏谚. 层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池[J]. 中国光学(中英文), 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267
引用本文: 苏彦勋, 柯沅锋, 蔡士良, 姚芊瑜, 徐嘉妘, 龚柏谚. 层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池[J]. 中国光学(中英文), 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267
SU Yen-hsun, KE Yuan-feng, CAI Shi-liang, YAO Qian-yu, XYU Jia-yun, KUNG Po-yen. Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell[J]. Chinese Optics, 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267
Citation: SU Yen-hsun, KE Yuan-feng, CAI Shi-liang, YAO Qian-yu, XYU Jia-yun, KUNG Po-yen. Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell[J]. Chinese Optics, 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267

层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池

基金项目: 

台湾科学委员会研究计划资助项目(No.102-2221-E-006-293-MY3)

详细信息
    作者简介:

    柯沅锋(1985-),台湾彰化人,硕士,2013年于台湾东华大学获得硕士学位,主要从事能源材料方面的研究。E-mail:person.wade@gmail.com

    通讯作者:

    苏彦勋,E-mail:yhsu@mail.ncku.edu.tw

  • 中图分类号: TM914.4

Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell

  • 摘要: 等离子体增感太阳能电池中,层层自组装金纳米粒子的表面等离子体共振能产生光电电流,金纳米粒子层的光电转换效率随表面等离子体共振强度的提升而增加。等离子体增感太阳能电池初步试验光电转换效能为0.75%。利用模型仿真电荷分离的现象、光电电流的产生,以及表面等离子体共振和光电电流产生之间的关系来解释实验结果。在未来,通过优化等离子体增感太阳能电池组件,可以进一步提升其转换效率。这在表面等离子体激活太阳能电池及等离子体太阳能电池领域将有很大应用潜力。

     

  • [1] HUANG X Q, TANG S H, MU X L, et al.. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nat. Nanotechnol, 2011, 6:28-32. [2] KABASHIN A V, EVANS P, PASTKOVSKY S, et al.. Plasmonic nanorod metamaterials for biosensing, plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat. Mater., 2009, 8:867-871. [3] LI H B, LI F Y, HAN C P, et al.. Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles[J]. Sens Actuat B Chem., 2009, 145:194. [4] TIAN Y, SHI X, LU C Q, et al.. Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell[J]. Electrochem. Commun., 2009, 11:1603-1605. [5] CUEVAS-MUNIZ F M, GUERRA-BALCAZAR M, CASTANEDA F, et al.. Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell[J]. J. Power Sources, 2011, 196:5853. [6] LU Y Z, WANG Y C, CHEN W. Silver nanorods for oxygen reduction:strong effects of protecting ligand on the electrocatalytic activity[J]. J. Power Sources, 2011, 196:3033. [7] ZHOU H Q, QIU C Y, YU F, et al.. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-Layer graphenes[J]. J. Phys. Chem. C, 2011, 115:11348-11354. [8] NIU B J, WU L L, TANG W, et al.. Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance[J]. Cry. Steng. Comm., 2011, 13:3678-3681. [9] SU Y H, TU S L, TSENG S W, et al.. Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins[J]. Nanoscale, 2010, 2:2639-2646. [10] BABA A, AOKI N, SHINBO K, et al.. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells[J]. ACS Appl. Mater. Interf., 2011, 3:2080-2084. [11] FURUBE A, DU L, HARA K, et al.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. J. Am. Chem. Soc., 2007, 129:14852. [12] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat. Mater., 2011, 10:911. [13] TIAN Y, TATSUMA T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2[J]. Chem. Commun.(Camb), 2004(16):1810-1811. [14] TIAN Y, TATSUMA T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles[J]. J Am Chem Soc, 2005, 127:7632. [15] Two highly dispersed metallic oxides by the aerosil process[J]. Degussa Technical Bulletin, 1990(56):3-21. [16] ZHU M, AIKENS C M, HOLLANDER F J, et al.. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties[J]. J. Am. Chem. Soc., 2008, 130:5883. [17] FURUBE A, DU L, HARA K, et al.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. J. Am. Chem. Soc., 2007, 129:14852. [18] MCFARLAND E W, TANG J. A photovoltaic device structure based on internal electron emission[J]. Nature, 2003, 421:616. [19] BISQUERT J, CAHEN D, HODES G, et al.. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells[J]. J. Phys. Chem. B, 2004, 108:8106. [20] WANG Q, ITO S, GRATZEL M, et al.. Characteristics of high efficiency dye-sensitized solar cells[J]. J. Phys. Chem. B, 2006, 110:25210. [21] SMESTAD G P. Optoelectronics of Solar Cells[M]. Washington, DC:SPIE, 2002. [22] WURFEL P. Physics of Solar Cells:From Principles to New Concepts [M]. Weinhein:Wiley-VCH Verlag GmbH & Co. KGaA, 2005.

  • 加载中
计量
  • 文章访问数:  1640
  • HTML全文浏览量:  294
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-09
  • 修回日期:  2014-02-13
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回