Femtosecond laser direct writing bio-gel template for in situ synthesis of nanoparticles
-
摘要: 为了制备具有可控复杂形状和特定化学性质的聚合物微结构,提出了一种飞秒激光直写生物凝胶模板原位合成纳米粒子的方法。首先,采用飞秒激光直写技术加工带有COOH基团的复杂三维结构的生物凝胶模板,用氢氧化钠处理使COOH基团离子化为COO-基团;然后,用金属盐溶液处理,使金属离子与COO-基团螯合,形成纳米粒子结晶核。通过多次循环盐溶液处理步骤,控制模板中纳米粒子的粒径与含量。实验结果表明:所制备的生物凝胶模板具有亚100 nm分辨率和10 m量级尺寸,纳米粒子含量高达9%。该法简单高效,具有很好的应用前景。Abstract: In order to fabricate polymer microstructures with controllable complex shapes and specific chemical properties, we develop a new method using femtosecond laser direct writing biological gel template to synthesis nanoparticles in-situ. First, we use femtosecond laser direct writing complex three-dimensional(3D) bio gel template with COOH groups, followed by treatment with NaOH solution to change COOH groups into COO-. Then, we put the template in metal salt solution, and make the metal particles chelate with the COO- groups to grow into nanoparticles. Through different cycles of this step, the sizes and content of the nanoparticles in the template can be controlled. The experimental results show that the bio gel templates fabricated by this method have sub 100 nm resolution and 10 m order size, and the content of the nanoparticles reaches up as high as 9%. This method is simple and efficient, which has a good application prospect.
-
Key words:
- femtosecond laser direct writing /
- bio gel template /
- in situ synthesis /
- nanoparticles
-
[1] STEBE K J,LEWANDOWSKI E,GHOSH M. Oriented assembly of metamaterials[J]. Science,2009,325(5937):159-160.
[2] ANTHONY S M,HONG L,KIM M,et al.. Single-particle colloid tracking in four dimensions[J]. Langmuir,2006,22(24):9812-9815.
[3] DU Y,LO E,ALI S,et al.. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs[J]. Proceedings of the National Academy of Sciences,2008,105(28):9522-9527.
[4] PREGIBON D C,TONER M,DOYLE P S. Multifunctional encoded particles for high-throughput biomolecule analysis[J]. Science,2007,315(5817):1393-1396.
[5] HORCAJADA P,CHALATI T,SERRE C,et al.. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials,2009,9(2):172-178.
[6] CHAMPION J A,KATARE Y K,MITRAGOTRI S. Particle shape:a new design parameter for micro-and nanoscale drug delivery carriers[J]. J. Controlled Release,2007,121(1):3-9.
[7] HAN Y,ALSAYED A M,NOBILI M,et al.. Brownian motion of an ellipsoid[J]. Science,2006,314(5799):626-630.
[8] MADIVALA B,VANDEBRIL S,FRANSAER J,et al.. Exploiting particle shape in solid stabilized emulsions[J]. Soft Matter,2009,5(8):1717-1727.
[9] GLOTZER S C,SOLOMON M J. Anisotropy of building blocks and their assembly into complex structures[J]. Nature Materials,2007,6(8):557-562.
[10] DENDUKURI D,DOYLE P S. The synthesis and assembly of polymeric microparticles using microfluidics[J]. Advanced Materials,2009,21(41):4071-4086.
[11] JIANG S,CHEN Q,TRIPATHY M,et al.. Janus particle synthesis and assembly[J]. Advanced Materials,2010,22(10):1060-1071.
[12] CHAMPION J A,KATARE Y K,MITRAGOTRI S. Making polymeric micro-and nanoparticles of complex shapes[J]. Proceedings of the National Academy of Sciences,2007,104(29):11901-11904.
[13] ROLLAND J P,MAYNOR B W,EULISS L E,et al.. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials[J]. J. American Chemical Society,2005,127(28):10096-10100.
[14] BROWN A B D,SMITH C G,RENNIE A R. Fabricating colloidal particles with photolithography and their interactions at an air-water interface[J]. Physical Review E,2000,62(1):951.
[15] JEONG W,KIM J,KIM S,et al.. Hydrodynamic microfabrication via "on the fly" photopolymerization of microscale fibers and tubes[J]. Lab on a Chip,2004,4(6):576-580.
[16] LAFRATTA C N,FOURKAS J T,BALDACCHINI T,et al.. Multiphoton fabrication[J]. Angewandte Chemie International Edition,2007,46(33):6238-6258.
[17] GOPPERT-MAYER M. Two-quantum processes[J]. Ann Phys(Leipzig),1931,9:273-294.
[18] SUN Y L,LIU D X,DONG W F,et al.. Tunable protein harmonic diffractive micro-optical elements[J]. Optics Letters,2012,37(14):2973-2975.
[19] STEVENS P D,FAN J,GARDIMALLA H M R,et al.. Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions[J]. Organic Letters,2005,7(11):2085-2088.
[20] TERRIS B D,THOMSON T. Nanofabricated and self-assembled magnetic structures as data storage media[J]. J. Physics D:Appl. Phys.,2005,38(12):R199.
[21] 孟想,杨蕊竹,刘东旭,等. 紫外固化型聚合物水凝胶的周期图案形成及其调控[J]. 中国光学,2012,5(4):436-443. MENG X,YANG R ZH,LIU D X,et al.. Formation and adjustment of cycle pattern of UV-curable polymeric hydrogel [J]. Chinese Optics,2012,5(4):436-443.(in Chinese)
[22] 王二伟,鱼卫星,王成,等. 用表面等离子体共振传感器检测纳米间距[J]. 中国光学,2013,6(2):259-266. WANG E W,YU W X,WANG CH,et al.. Nanogap measurement by using surface plasmon resonance sensor [J]. Chinese Optics,2013,6(2):259-266.(in Chinese)
[23] 任玉,李付锦,董旭,等. 飞秒激光等离子体通道传导能量特性的研究进展 [J]. 中国光学,2012,5(2):134-142. REN Y,LI F J,DONG X,et al.. Research of guiding energy with plasma channel induced by femtosecond laser in air[J]. Chinese Optics,2012,5(2):134-142.(in Chinese)
[24] 张以亮,汪建斌,黄晓高,等. 聚合物波导型表面等离子体共振传感器的特性研究[J]. 发光学报,2013,34(7):948-951. ZHANG Y L,WANG J B,HUANG X L,et al.. Characteristics of SPR sensor based on polyer waveguide[J]. Chinese J. Luminescence,2013,34(7):948-951.(in Chinese)
计量
- 文章访问数: 2087
- HTML全文浏览量: 744
- PDF下载量: 537
- 被引次数: 0