留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光直写生物凝胶模板原位合成纳米粒子

刘东旭 夏虹 孙允陆 陈岐岱 董文飞

刘东旭, 夏虹, 孙允陆, 陈岐岱, 董文飞. 飞秒激光直写生物凝胶模板原位合成纳米粒子[J]. 中国光学(中英文), 2014, 7(4): 608-615. doi: 10.3788/CO.20140704.0608
引用本文: 刘东旭, 夏虹, 孙允陆, 陈岐岱, 董文飞. 飞秒激光直写生物凝胶模板原位合成纳米粒子[J]. 中国光学(中英文), 2014, 7(4): 608-615. doi: 10.3788/CO.20140704.0608
LIU Dong-xu, XIA Hong, SUN Yun-lu, CHEN Qi-dai, DONG Wen-fei. Femtosecond laser direct writing bio-gel template for in situ synthesis of nanoparticles[J]. Chinese Optics, 2014, 7(4): 608-615. doi: 10.3788/CO.20140704.0608
Citation: LIU Dong-xu, XIA Hong, SUN Yun-lu, CHEN Qi-dai, DONG Wen-fei. Femtosecond laser direct writing bio-gel template for in situ synthesis of nanoparticles[J]. Chinese Optics, 2014, 7(4): 608-615. doi: 10.3788/CO.20140704.0608

飞秒激光直写生物凝胶模板原位合成纳米粒子

基金项目: 

国家自然科学基金资助项目(No.91123029,No.61077066,No.50902128)

详细信息
    作者简介:

    孙允陆(1986-),男,山东青岛人,博士,2009年于吉林大学获得学士学位,主要从事蛋白质微光子学器件制作方面的研究。E-mail:sunyunlu825@163.com

    通讯作者:

    董文飞

  • 中图分类号: O644.18

Femtosecond laser direct writing bio-gel template for in situ synthesis of nanoparticles

  • 摘要: 为了制备具有可控复杂形状和特定化学性质的聚合物微结构,提出了一种飞秒激光直写生物凝胶模板原位合成纳米粒子的方法。首先,采用飞秒激光直写技术加工带有COOH基团的复杂三维结构的生物凝胶模板,用氢氧化钠处理使COOH基团离子化为COO-基团;然后,用金属盐溶液处理,使金属离子与COO-基团螯合,形成纳米粒子结晶核。通过多次循环盐溶液处理步骤,控制模板中纳米粒子的粒径与含量。实验结果表明:所制备的生物凝胶模板具有亚100 nm分辨率和10 m量级尺寸,纳米粒子含量高达9%。该法简单高效,具有很好的应用前景。

     

  • [1] STEBE K J,LEWANDOWSKI E,GHOSH M. Oriented assembly of metamaterials[J]. Science,2009,325(5937):159-160.
    [2] ANTHONY S M,HONG L,KIM M,et al.. Single-particle colloid tracking in four dimensions[J]. Langmuir,2006,22(24):9812-9815.
    [3] DU Y,LO E,ALI S,et al.. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs[J]. Proceedings of the National Academy of Sciences,2008,105(28):9522-9527.
    [4] PREGIBON D C,TONER M,DOYLE P S. Multifunctional encoded particles for high-throughput biomolecule analysis[J]. Science,2007,315(5817):1393-1396.
    [5] HORCAJADA P,CHALATI T,SERRE C,et al.. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials,2009,9(2):172-178.
    [6] CHAMPION J A,KATARE Y K,MITRAGOTRI S. Particle shape:a new design parameter for micro-and nanoscale drug delivery carriers[J]. J. Controlled Release,2007,121(1):3-9.
    [7] HAN Y,ALSAYED A M,NOBILI M,et al.. Brownian motion of an ellipsoid[J]. Science,2006,314(5799):626-630.
    [8] MADIVALA B,VANDEBRIL S,FRANSAER J,et al.. Exploiting particle shape in solid stabilized emulsions[J]. Soft Matter,2009,5(8):1717-1727.
    [9] GLOTZER S C,SOLOMON M J. Anisotropy of building blocks and their assembly into complex structures[J]. Nature Materials,2007,6(8):557-562.
    [10] DENDUKURI D,DOYLE P S. The synthesis and assembly of polymeric microparticles using microfluidics[J]. Advanced Materials,2009,21(41):4071-4086.
    [11] JIANG S,CHEN Q,TRIPATHY M,et al.. Janus particle synthesis and assembly[J]. Advanced Materials,2010,22(10):1060-1071.
    [12] CHAMPION J A,KATARE Y K,MITRAGOTRI S. Making polymeric micro-and nanoparticles of complex shapes[J]. Proceedings of the National Academy of Sciences,2007,104(29):11901-11904.
    [13] ROLLAND J P,MAYNOR B W,EULISS L E,et al.. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials[J]. J. American Chemical Society,2005,127(28):10096-10100.
    [14] BROWN A B D,SMITH C G,RENNIE A R. Fabricating colloidal particles with photolithography and their interactions at an air-water interface[J]. Physical Review E,2000,62(1):951.
    [15] JEONG W,KIM J,KIM S,et al.. Hydrodynamic microfabrication via "on the fly" photopolymerization of microscale fibers and tubes[J]. Lab on a Chip,2004,4(6):576-580.
    [16] LAFRATTA C N,FOURKAS J T,BALDACCHINI T,et al.. Multiphoton fabrication[J]. Angewandte Chemie International Edition,2007,46(33):6238-6258.
    [17] GOPPERT-MAYER M. Two-quantum processes[J]. Ann Phys(Leipzig),1931,9:273-294.
    [18] SUN Y L,LIU D X,DONG W F,et al.. Tunable protein harmonic diffractive micro-optical elements[J]. Optics Letters,2012,37(14):2973-2975.
    [19] STEVENS P D,FAN J,GARDIMALLA H M R,et al.. Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions[J]. Organic Letters,2005,7(11):2085-2088.
    [20] TERRIS B D,THOMSON T. Nanofabricated and self-assembled magnetic structures as data storage media[J]. J. Physics D:Appl. Phys.,2005,38(12):R199.
    [21] 孟想,杨蕊竹,刘东旭,等. 紫外固化型聚合物水凝胶的周期图案形成及其调控[J]. 中国光学,2012,5(4):436-443. MENG X,YANG R ZH,LIU D X,et al.. Formation and adjustment of cycle pattern of UV-curable polymeric hydrogel [J]. Chinese Optics,2012,5(4):436-443.(in Chinese)
    [22] 王二伟,鱼卫星,王成,等. 用表面等离子体共振传感器检测纳米间距[J]. 中国光学,2013,6(2):259-266. WANG E W,YU W X,WANG CH,et al.. Nanogap measurement by using surface plasmon resonance sensor [J]. Chinese Optics,2013,6(2):259-266.(in Chinese)
    [23] 任玉,李付锦,董旭,等. 飞秒激光等离子体通道传导能量特性的研究进展 [J]. 中国光学,2012,5(2):134-142. REN Y,LI F J,DONG X,et al.. Research of guiding energy with plasma channel induced by femtosecond laser in air[J]. Chinese Optics,2012,5(2):134-142.(in Chinese)
    [24] 张以亮,汪建斌,黄晓高,等. 聚合物波导型表面等离子体共振传感器的特性研究[J]. 发光学报,2013,34(7):948-951. ZHANG Y L,WANG J B,HUANG X L,et al.. Characteristics of SPR sensor based on polyer waveguide[J]. Chinese J. Luminescence,2013,34(7):948-951.(in Chinese)

  • 加载中
计量
  • 文章访问数:  2087
  • HTML全文浏览量:  744
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-21
  • 修回日期:  2014-04-23
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回