Singularity distribution of the dynamic speckles in the nano-magnetic fluid interferometry
-
摘要: 通过对由纳米磁流体运动引起的双扫描激光散斑干涉光场及其变化做拉盖尔-高斯滤波下的傅里叶变换,获得动态散斑干涉图对应的光学涡旋分布及变化特征。分析认为,光学涡旋分布及变化对应着由纳米磁微粒及其团族的运动所引起的动态散斑变化。当纳米磁微粒聚集到分散的过程中,动态激光散斑光场的奇异场分布发生相应变化,说明了磁流体运动过程对应涡旋密度有先大后小,再由小变大的两个变化;并且光学涡旋密度高,对应较小颗粒的散斑场,磁流体处于稳态的状况;光学涡旋密度低,对应较大颗粒的散斑场,对应着磁流体激烈的运动。研究结果体现了奇异场分布变化和纳米磁流体动后趋稳的过程存在对应关系。Abstract: The optical vortex distribution of the dynamic speckles in the interferometry and the corresponding variation characteristics were obtained by Fourier transform with Laguerre-Gaussian filter. The change of dynamic speckle caused by the movement of the nano-magnetic particles is the same as appearing in the change of the singular distribution. And when the nanometer magnetic particles moved in the gathered process into dispered process, the dynamic speckle singularity distribution illustrated that there were two variations of the vortex density, to begin with from big to small, and to end with from small to big that corresponded to the magnetic liquid movement. The optical vortex density is big corresponding smaller spot speckles and the magnetic fluid in the steady moving. The optical vortex density is little corresponding to the larger spot speckles and the magnetic fluid in the intensely moving. Research results indicate the existence of the relation between the movement of the nano-magnetic particles and the variations of the singular distribution.
-
表 1 散斑光场奇异点的分布密度
Table 1. Distribution density of singularity in the speckle field
-
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]