留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平腔面发射半导体激光器研究进展

海一娜 邹永刚 田锟 马晓辉 王海珠 范杰 白云峰

海一娜, 邹永刚, 田锟, 马晓辉, 王海珠, 范杰, 白云峰. 水平腔面发射半导体激光器研究进展[J]. 中国光学(中英文), 2017, 10(2): 194-206. doi: 10.3788/CO.20171002.0194
引用本文: 海一娜, 邹永刚, 田锟, 马晓辉, 王海珠, 范杰, 白云峰. 水平腔面发射半导体激光器研究进展[J]. 中国光学(中英文), 2017, 10(2): 194-206. doi: 10.3788/CO.20171002.0194
HAI Yi-na, ZOU Yong-gang, TIAN Kun, MA Xiao-hui, WANG Hai-zhu, FAN Jie, BAI Yun-feng. Research progress of horizontal cavity surface emitting semiconductor lasers[J]. Chinese Optics, 2017, 10(2): 194-206. doi: 10.3788/CO.20171002.0194
Citation: HAI Yi-na, ZOU Yong-gang, TIAN Kun, MA Xiao-hui, WANG Hai-zhu, FAN Jie, BAI Yun-feng. Research progress of horizontal cavity surface emitting semiconductor lasers[J]. Chinese Optics, 2017, 10(2): 194-206. doi: 10.3788/CO.20171002.0194

水平腔面发射半导体激光器研究进展

基金项目: 

吉林省科技计划重点项目 20140204028GX

吉林省科技计划重点项目 20150204068GX

详细信息
    作者简介:

    海一娜 (1990-), 女, 内蒙通辽人, 博士研究生, 主要从事光电子技术与应用方面的研究。E-mail:haiyn90@163.com

    通讯作者:

    邹永刚 (1982-), 男, 吉林长春人, 博士, 副研究员, 硕士生导师, 2004年、2009年于吉林大学分别获得学士、博士学位, 主要从事光电子技术与应用、光电子器件等方面研究。E-mail:zouyg@cust.edu.cn

  • 中图分类号: TN248.4

Research progress of horizontal cavity surface emitting semiconductor lasers

Funds: 

Key Project of S & T Development Plan of Jilin Province of China 20140204028GX

Key Project of S & T Development Plan of Jilin Province of China 20150204068GX

  • 摘要: 近年来,水平腔面发射半导体激光器具有高功率、高光束质量及易封装集成等优良性能,已成为激光器领域的研究热点。本文详细阐述了几种水平腔面发射半导体激光器的结构设计、工作原理以及激光输出特性,并对该激光器国内外最新研究进展与发展现状进行了总结和论述。在此基础上,对该激光器的研究方向和发展趋势进行了分析与展望。目前,水平腔面发射半导体激光器的激光输出功率可达瓦级,美国Alfalight公司引入曲线形光栅的单一发射器输出功率可达73 W。随着应用领域的不断拓展,中远红外波段水平腔面发射激光器将成为未来的研究焦点。

     

  • 图 1  水平腔面发射激光器结构示意图

    Figure 1.  Structure diagram of horizontal cavity surface emitting lasers

    图 2  垂直发射激光器芯片结构示意图[23]

    Figure 2.  Structure diagram of vertical emitting laser chip[23]

    图 3  水平腔面发射激光器横截面原理图[24]

    Figure 3.  Schematic cross-sectional view of horizontal cavity surface emitting lasers (HCSEL)[24]

    图 4  二维面发射激光器的立体结构图

    插图:面发射激光器截面图[26]

    Figure 4.  3-D schematic view of 2-D surface-emitting laser

    Inset: Cross-sectional view of surface-emitting laser [26]

    图 5  激光器结构 (光栅周期Λ和占空比σ)[28]

    Figure 5.  Laser structure (grating periodicity Λ and duty cycle σ)[28]

    图 6  衬底发射量子级联激光器结构示意图[29]

    Figure 6.  Schematic representation of the substrate-emitting quantum cascade laser[29]

    图 7  非周期光栅结构面发射量子级联激光器示意图[30]

    Figure 7.  Schematic diagram of surface-emitting quantum cascade lasers using biperiodic top metal grating[30]

    图 8  面发射掩埋异质结构DFB/DBR量子级联激光器结构示意图[31]

    Figure 8.  Schematic diagram of surface-emitting buried-heterostructure DFB/DBR quantum cascade lasers[31]

    图 9  三维器件结构示意图[32]

    Figure 9.  Schematic three-dimensional device representation[32]

    图 10  激光器结构横截面结构图[33]

    Figure 10.  Schematic cross section of laser structure[33]

    图 11  面发射量子级联激光器光栅与脊形波导横截面及局部光栅的电子显微俯瞰示意图[37]

    Figure 11.  Schematic cross section of the grating region and the ridge-waveguide of surface emitting quantum cascade lasers and scanning electron microscopy top viewpoint of partial grating[37]

    图 12  表面金属光栅分布反馈量子级联激光器示意图[38]

    Figure 12.  Schematic diagram of the surface metal grating distributed feedback quantum cascade lasers[38]

    图 13  面发射量子级联激光器示横截面结构图[39]

    Figure 13.  Schematic cross section of the surface-emitting quantum cascade lasers[39]

    图 14  宽条形衬底出光分布反馈量子级联激光器示意图[42]

    Figure 14.  Schematic of broad area substrate-emitting distributed feedback quantum cascade lasers[42]

    图 15  光栅结构扫描电子显微镜图像[43]

    Figure 15.  SEM image of the grating structure[43]

    图 16  曲线形光栅面发射分布反馈激光器 (带有中心泵浦区域、光栅和吸收区域) 俯视图[44-45]

    Figure 16.  An underside view of a curved-grating surface emitting distributed feedback laser showing central pumped-stripe, grating and absorber regions[44-45]

    图 17  圆形光栅激光器常见结构[46]

    Figure 17.  Generic structure of the circular grating lasers[46]

    图 18  二阶同轴圆形金属光栅太赫面发射分布反馈量子级联激光器示意图[47]

    Figure 18.  Schematic diagram of THz surface emitting distributed feedback quantum cascade lasers with a 2nd-order concentric circular metal grating[47]

    图 19  圆形量子级联激光器异质结和波导结构示意图

    插图是完整的圆形激光器形貌[49]

    Figure 19.  Schematic illustration of the heterostructure and the waveguide of a ring quantum cascade lasers. The inset shows a sketch of the complete ring laser[49]

    图 20  器件横截面图[61]

    Figure 20.  Schematic cross section of a device[61]

    图 21  光子晶体面发射激光器结构示意图

    左下方说明的是底部侧模圆形p电极直径[62]

    Figure 21.  Schematic structure of a PCSEL device. Lower left panel illustrates bottom side view of circular p-electrode with diameter L[62]

    表  1  3种结构面发射激光器性能

    Table  1.   Properties of three kinds surface emitting laser structures

    引入结构 波段范围/nm 出光光束质量 加工工艺 出光功率
    转向镜[23-24] 979.65 半高全宽0.9 nm 较复杂 W级
    1 490 半高全宽0.6 nm 较复杂 mW级
    二阶光栅[44] 9XX~1 5XX 椭圆形光斑发散角较小 较简易 W级
    光子晶体[22, 61-62] 1 4XX~8 0XX 圆形光斑发散角较小 较复杂 mW级
    下载: 导出CSV
  • [1] LEE H C, GAENSSLEN R E. Advances in Fingprint Technology[M]. Elsevier, 1991.
    [2] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitridelight-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441:325-328. doi: 10.1038/nature04760
    [3] HIRAVAMA H, TSUKADA Y, MAEDA T, et al.. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multi quantum-barrier electronlocking layer[J]. Appl. Phys. Express, 2010, 3:031002. doi: 10.1143/APEX.3.031002
    [4] KHAN M A, SHATALOV M, MARUSKA H P, et al.. Ⅲ-Nitride UV devices[J]. Jpn. J. Appl. Phys., 2005, 44(10):7191-7206. doi: 10.1143/JJAP.44.7191
    [5] 王立军, 宁永强, 秦莉, 等.大功率半导体激光器研究进展[J].发光学报, 2015, 36(1):1-19. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm

    WANG L J, NING Y Q, QIN L, et al.. Development of high power diode laser[J]. Chinese J. Luminescence, 2015, 36(1):1-19.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm
    [6] 李珂, 石鹏, 张晓波, 等.双透镜系统光学整形元件的设计制作[J].中国激光, 2010, 37(8):1972-1977. doi: 10.3788/CJL

    LI K, SHI P, ZHANG X B, et al.. Design and preparation of diffraction optical element in dual lens system[J]. Chinese J. Lasers, 2010, 37(8):1972-1977.(in Chinese) doi: 10.3788/CJL
    [7] 马浩统, 周朴, 王小林, 等.基于液晶空间光调制器的激光光束近场整形[J].光学学报, 2010, 30(7):2032-2036. doi: 10.3788/AOS

    MA H T, ZHOU P, WANG X L, et al.. Near-field beam shaping based on liquid crystal spatial light modulator[J]. Acta Optica Scinica, 2010, 30(7):2032-2036.(in Chinese) doi: 10.3788/AOS
    [8] 陈凯, 李平雪, 陈檬, 等.高斯光束整形为平顶光束的非球面系统设计和面形参数分析[J].激光与光电子学进展, 2011, 48(3):032201. http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201103010.htm

    CHEN K, LI X P, CHEN M, et al.. Design and analysis of surface parameters of aspheric lenses system converting Gaussian beam to flattop beam[J]. Laser & Optoelectronics Progress, 2011, 48(3):032201.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201103010.htm
    [9] 金国藩, 严瑛白, 邬敏贤, 等.二元光学[M].北京:国防工业出版社, 1998.

    JIN G F, YAN Y B, WU M X, et al.. Binary Optics[M]. Bingjing:National Defense Industry Press, 1998.(in Chinese)
    [10] STEFAN H, BEN L, BORIS R, et al.. Single emitter based diode lasers with high brightness and narrow linewidth[J]. Proc. SPIE, 2011, 7918:79180M. https://www.researchgate.net/publication/252552659_Single_Emitter_Based_Diode_Lasers_with_High_Brightness_High_Power_and_Narrow_Linewidth
    [11] PAUL W, BERND K H, KARSTEN R, et al.. High-power, high-brightness and low-weight fiber coupled diode laser device[J]. SPIE, 2011, 7918:PSI79180O. https://www.researchgate.net/publication/253092491_High-power_high-brightness_and_low-weight_fiber_coupled_diode_laser_device
    [12] KITCHING J, KNAPPE S. A microwave frequency reference based in VCSEL driven dark line resonances in Cs vapor[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(6):1313-1317. doi: 10.1109/19.893276
    [13] MILLER M, GRANBHERR M. Improved output performance of high-power VCSELs[J]. IEEE J Sel Top Quantum Electron, 2001, 7:210-216. doi: 10.1109/2944.954132
    [14] 田锟, 邹永刚, 马晓辉, 等.面发射分布反馈半导体激光器[J].中国光学, 2016, 9(1):51-64. doi: 10.3788/co.

    TIAN K, ZOU Y G, MA X H, et al.. Surface emitting distributed feedback semiconductor lasers[J]. Chinese Optics, 2016, 9(1):51-64.(in Chinese) doi: 10.3788/co.
    [15] 戚晓东, 叶淑娟, 张楠, 等.面发射分布反馈半导体激光器及光栅耦合半导体激光器[J].中国光学与应用光学, 2010, 3(5):415-431. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201005003.htm

    QI X D, YE S J, ZHANG N, et al.. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese J. Optics and Applied Optics, 2010, 3(5):415-431. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201005003.htm
    [16] TOBY J G, DON O, YAN X, et al.. Long wavelength surface-emitting distributed feedback (SE-DFB) laser for range finding applications[J]. SPIE, 2012, 8241:824113-4. https://www.researchgate.net/publication/258711644_Long_wavelength_Surface-Emitting_Distributed_Feedback_SE-DFB_laser_for_range_finding_applications
    [17] LIANG G Z, LIANG H K, ZHANG Y, et al.. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Optics Express, 2013, 21(26):31878-31882.
    [18] CLEMENS S, ELVIS M, SANG I A, et al.. Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers[J]. Applied Physics Letters, 2012, 100(19):191103-3. doi: 10.1063/1.4712127
    [19] CLEMENS S, ROLF S, SANG I A, et al.. Linearly polarized light from substrate emitting ring cavity quantumcascade lasers[J]. Applied Physics Letters, 2013, 103(8):081101-3. doi: 10.1063/1.4819034
    [20] SHOICHI K, TAKESHI K, YASUHIRO N, et al.. GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding[J]. Applied Physics Letters, 2010, 97(25):251112-3. doi: 10.1063/1.3528352
    [21] WU T T, CHEN C C, LU T C, et al.. Effects of lattice types on GaN-based photonic crystal surface-emitting lasers[J]. Quantum Electronics, 2015, 21(1):1700106.
    [22] ZHAO D Y, LIU S, YANG H J, et al.. Printed large-area single-mode photonic crystal bandedge surface-emitting lasers on silicon[J]. Scientific Reports, 2016, 6:18860. doi: 10.1038/srep18860
    [23] OSOWSKI M L, LAMMERT R M. High Power Frequency Stabilized Surface Emitting Arrays[R]. Osowski-SSDLTR, 2005.
    [24] MOEHRLE M, KREISSL J, MOLZOW W D, et al.. Ultra-low threshold 1490 nm surface-emitting BH-DFB laser diode with integrated monitor photodiode[C]. 22nd International Conference on Indium Phosphide & Related Materials (IPRM), IEEE, 2010:TuA3-4.
    [25] LI S, BOTEZ D. Design for high-power single-mode operation from 2-D surface-emitting ROW-DFB lasers[J]. Photonics Technology Letters, 2005, 17(3):519-521. doi: 10.1109/LPT.2004.842388
    [26] LI S, BOTEZ D. Analysis of 2-D Surface-Emitting ROW-DFB Semiconductor Power Single-Mode Operation[J]. J. Quantum Electronics, 2007, 43(8):655-667. doi: 10.1109/JQE.2007.900264
    [27] HOFLING S, HEINRICH J, REITHMAIER J P, et al.. Widely tunable single-modequantum cascade lasers with two monolithically coupled Fabry-P rot cavities[J]. Appl. Phys. Lett., 2006, 89:241126. doi: 10.1063/1.2404933
    [28] MARTIN S, FARHAN R. Analysis of Terahertz surface emitting quantum-cascade lasers[J]. J. Quantum Electronics, 2006, 42(3):257-265. doi: 10.1109/JQE.2005.863138
    [29] LYAKH A, ZORY P, BOTEZ D, et al.. Substrate-emitting, distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 2007, 91:181116. doi: 10.1063/1.2803851
    [30] MAISONS G, CARRAS M, GARCIA M, et al.. Substrate emitting index coupled quantum cascade lasers using biperiodic top metal grating[J]. Applied Physics Letters, 2009, 94(15):151104. doi: 10.1063/1.3113524
    [31] SIGLER C, KIRCH J D, EARLES T, et al.. Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes[J]. Applied Physics Letters, 2014, 1049(13):131108. https://www.researchgate.net/publication/261318558_Design_for_high-power_single-lobe_grating-surface-emitting_quantum_cascade_lasers_enabled_by_plasmon-enhanced_absorption_of_antisymmetric_modes
    [32] BOYLE C, SIGLER C, KIRCH J D, et al.. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode[J]. Applied Physics Letters, 2016, 108:121107. doi: 10.1063/1.4944846
    [33] GUO W H, LU Q Y, LIU J Q, et al.. Analysis of surface emitting distributed-feedback quantum cascade laser based on a surface-plasmon waveguide[J]. J. Semiconductors, 2010, 31(11):114014. doi: 10.1088/1674-4926/31/11/114014
    [34] GUO W H, LIU J Q, CHEN J Y, et al.. Single-mode surface-emitting, distributed feedback quantum-cascade lasers based on hybrid waveguide structure[J]. Chinese Optics Letters, 2011, 9(6):061404. doi: 10.3788/COL
    [35] 叶淑娟, 秦莉, 戚晓东, 等.二阶光栅分布反馈半导体激光器的出光特性[J].中国激光, 2010, 37(9):2371-2375. doi: 10.3788/CJL

    YE SH J, QIN L, QI X D, et al.. Emission characteristics of second-order distributed feedback semiconductor lasers[J]. Chinese J. Lasers, 2010, 37(9):2371-2375.(in Chinese) doi: 10.3788/CJL
    [36] CHEN Y Y, QIN L, JIA P, et al.. High power narrow far-field broad-stripe semiconductor lasers with second-order metal grating feedback[J]. Semiconductor Lasers and Applications, 2012, 8552:85520E. https://www.researchgate.net/publication/259130556_High_Power_Narrow_far-field_Broad-Stripe_Semiconductor_Lasers_with_Second-Order_Metal_Grating_Feedback
    [37] CHEN J Y, KIU J Q, GUO W H, et al.. High-power surface-emitting surface-plasmon-enhanced distributed feedback quantum cascade lasers[J]. Photonics Technology Letters, 2012, 24(11):972-974. doi: 10.1109/LPT.2012.2192724
    [38] YAO D Y, LIU F Q, ZHANG J C, et al.. High power surface metal grating distributed feedback quantum cascade lasers emitting at λ~8.3μm[J]. Chinese Physics Letter, 2012, 29(9):94205. doi: 10.1088/0256-307X/29/9/094205
    [39] YAO D Y, ZHANG J C, LIU F Q, et al.. Surface-emitting quantum cascade lasers operation in continuous-wave mode above 70℃ at λ-4.6μm[J]. Applied Physics Letters, 2013, 103:041121. doi: 10.1063/1.4816722
    [40] TAN S Y, ZHAI T, LU D, et al.. Fabrication and characterization of high power 1064-nm DFB lasers[J]. Chinese Physics Letter, 2013, 30(11):114202. doi: 10.1088/0256-307X/30/11/114202
    [41] ZHANG J C, LIU F Q, YAO D Y, et al.. Multi-wavelength surface emitting quantum cascade lasers based on equivalent phase shift[J]. J. Applied Physics, 2014, 115:033106. doi: 10.1063/1.4862649
    [42] YAO D Y, ZHANG J C, LIU F Q, et al.. 1.8W room temperature pulsed operation substrate-emitting quantum cascade lasers[J]. IEEE Photonics Technology Letters, 2014, 26(4):323-325. doi: 10.1109/LPT.2013.2293495
    [43] LIU Y H, ZHANG J C, JIA Z W, et al.. Top grating, surface-emitting DFB quantum cascade lasers in continuous-wave operation[J]. Photonics Technology Letters, 2015, 27(17):1829-1832. doi: 10.1109/LPT.2015.2443780
    [44] TOBY J G, DON O, YAN X, et al.. High-power surface emitting distributed feedback (SE-DFB) lasers[J]. 2012 IEEE Photonics Society Summer Topical Meeting, IEEE, 2012:1-2. https://www.researchgate.net/publication/261036286_High-power_surface_emitting_distributed_feedback_SE-DFB_lasers
    [45] KANSKAR M, CAI J, KEDLAYA D, et al.. High brightness 975 nm surface-emitting distributed feedback laser & arrays[J]. SPIE, 2010, 7686:76860J. https://www.researchgate.net/publication/238554158_High_Brightness_975_nm_Surface-emitting_Distributed_Feedback_Laser_Arrays
    [46] TURNBULL G A, CARLETON A, BARLOW G F, et al.. Influence of grating characteristics on the operation of circular-grating distributed feedback polymer lasers[J]. J. Applied Physics, 2005, 98:023105. doi: 10.1063/1.1935131
    [47] YU S F, LI X F. Design and analysis of terahertz surface-emitting distributed-feedback lasers with circular metal grating[C]. IEEE 3rd International Nanoelectronics Conference, IEEE, 2010:1-2.
    [48] LIANG G Z, LIANG H K, ZHANG Y, et al.. Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Applied Physics Letters, 2013, 102:031119. doi: 10.1063/1.4789535
    [49] ROLF S, CLEMENS S, TOBIAS Z, et al.. Grating-based far field modifications of ring quantum cascade lasers[J]. Optics Express, 2014, 22(13):15829-15836. doi: 10.1364/OE.22.015829
    [50] MEIER M, MEKIS A, DODABALAPUR A, et al.. Laser action from two-dimensional distributed feedback in photonic crystal[J]. Applied Physics Letters, 1999, 74:7. doi: 10.1063/1.123116
    [51] IMADA M, NODA S, CHUTINAN A, et al.. Coherent two-diamwnsional lasing action in surface-emitting laser with triandular-lattice photonic crystal structure[J]. Applied Physics Letters, 1999, 75:316. doi: 10.1063/1.124361
    [52] NODA S, YOKOYAMA M, IMADA M, et al.. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design[J]. Science, 2001, 293:1123. doi: 10.1126/science.1061738
    [53] IMADA M, CHUTINAN A, NODA S, et al.. Multidirectionally distributed feedback photonic crystal lasers[J]. Phys. Rev. B, 2002, 65:195306. doi: 10.1103/PhysRevB.65.195306
    [54] VURGAFTMAN I, MEYER J R. Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers[J]. IEEE J. Quantum Electron, 2003, 39:689-700. doi: 10.1109/JQE.2003.811943
    [55] OHNISHI D, OKANO T, IMADA M, et al.. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser[J]. Optical Express, 2004, 12:1562-1568. doi: 10.1364/OPEX.12.001562
    [56] MIYAI E, SAKAI K, OKANO T, et al.. Photonics:Lasers producing tailored beams[J]. Nature, 2006, 441:946-948. doi: 10.1038/441946a
    [57] MATSUBARA H, YOSHIMOTO S, SAITO H, et al.. GaN photo-crystal surface-wmitting laser at blue-violet wavelengths[J]. Science, 2008, 319:445-447. doi: 10.1126/science.1150413
    [58] KIM M, KIM C S, BEWLEY W, et al.. Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared[J]. Applied Physics Letters, 2006, 88:191105. doi: 10.1063/1.2203234
    [59] CHASSAGNEUX Y, COLOMBELLI R, MAINEULT W, et al.. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions[J]. Nature, 2009, 457:174-178. doi: 10.1038/nature07636
    [60] KUROSAKA Y, IWAHASHI S, LIANG Y, et al.. On-chip beam-steering photonic-crystal lasers[J]. Photonics, 2010, 4:447-450. doi: 10.1038/nphoton.2010.118
    [61] XU G Y, VIRGINIE M, YANNICK C, et al.. Surface-emitting quantum cascade lasers with metallic photonic-crystal resonators[J]. Applied Physics Letters, 2009, 94:221101-3. doi: 10.1063/1.3143652
    [62] LIANG Y, TSUYOSHI O, KYOKO K, et al.. Mode stability in photonic-crystal surface-emitting lasers with large κ1DL[J]. Applied Physics Letters, 2014, 104:021102-3. doi: 10.1063/1.4861708
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  3548
  • HTML全文浏览量:  759
  • PDF下载量:  1365
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 修回日期:  2016-11-29
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回