留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

键合型掺铒纳米晶-聚合物波导放大器的制备

李彤 张美玲 王菲 张大明 汪国平

李彤, 张美玲, 王菲, 张大明, 汪国平. 键合型掺铒纳米晶-聚合物波导放大器的制备[J]. 中国光学(中英文), 2017, 10(2): 219-225. doi: 10.3788/CO.20171002.0219
引用本文: 李彤, 张美玲, 王菲, 张大明, 汪国平. 键合型掺铒纳米晶-聚合物波导放大器的制备[J]. 中国光学(中英文), 2017, 10(2): 219-225. doi: 10.3788/CO.20171002.0219
LI Tong, ZHANG Mei-ling, WANG Fei, ZHANG Da-ming, WANG Guo-ping. Fabrication of optical waveguide amplifiers based on bonding-type NaYF4: Er nanoparticles-polymer[J]. Chinese Optics, 2017, 10(2): 219-225. doi: 10.3788/CO.20171002.0219
Citation: LI Tong, ZHANG Mei-ling, WANG Fei, ZHANG Da-ming, WANG Guo-ping. Fabrication of optical waveguide amplifiers based on bonding-type NaYF4: Er nanoparticles-polymer[J]. Chinese Optics, 2017, 10(2): 219-225. doi: 10.3788/CO.20171002.0219

键合型掺铒纳米晶-聚合物波导放大器的制备

基金项目: 

国家自然科学基金资助项目 11274247

国家自然科学基金资助项目 11574218

国家自然科学基金资助项目 11504243

国家自然科学基金资助项目 61475061

广东省自然科学基金资助项目 2016A030313042

广东省自然科学基金资助项目 2015A030310400

详细信息
    作者简介:

    李彤 (1984-), 女, 吉林长春人, 博士后, 主要从事平面光波导放大器方面的研究。E-mail:litong0722@foxmail.com

    通讯作者:

    王菲 (1978-), 女, 黑龙江哈尔滨人, 副教授, 主要从事平面光波导集成器件方面的研究。E-mail:wang_fei@jlu.edu.cn

  • 中图分类号: TN256

Fabrication of optical waveguide amplifiers based on bonding-type NaYF4: Er nanoparticles-polymer

Funds: 

National Natural Science Foundation of China 11274247

National Natural Science Foundation of China 11574218

National Natural Science Foundation of China 11504243

National Natural Science Foundation of China 61475061

Guangdong Provincial Natural Science Foundation of China 2016A030313042

Guangdong Provincial Natural Science Foundation of China 2015A030310400

  • 摘要: 为了克服主客掺杂型有源材料均匀性和稳定性差的问题,采用键合掺杂方法,将高温热解法制备的油酸修饰掺铒氟钇钠纳米晶粒与甲基丙烯酸甲酯发生共聚反应,形成键合型有源芯层材料。纳米晶粒均匀固定在聚合物分子链上,抑制了高浓度掺杂时的团聚析出且材料更稳定。纳米粒子在聚合物中的质量百分比达到约1wt%,具有良好的成膜性,用原子力显微镜照片观察薄膜表面粗糙度为1.76 nm。用椭偏仪测量薄膜光学性质,并用柯西色散模型拟合出薄膜折射率随波长的变化关系,材料在1 550 nm信号光波长的折射率为1.485。设计嵌入式波导结构,采用有限元方法进行模式分析和计算光场强度分布。采用紫外光刻和感应耦合等离子体刻蚀工艺制备凹槽形下包层,填充有源材料制备条形波导放大器。实验结果表明,当1 550 nm信号光功率为0.1 mW,1 480 nm泵浦光功率为390 mW时,在1.2 cm长的样品中得到了3.58 dB的信号光相对增益。

     

  • 图 1  掺铒放大器在1480 nm泵浦下的光放大原理示意图

    Figure 1.  Schematic diagram of the principle of Erbium-doped amplifier under 1480 nm pumping light

    图 2  OA-NaYF4: Er-PMMA的分子结构示意图

    Figure 2.  Structure scheme of the OA-NaYF4: Er-PMMA

    图 3  复合材料OA-NaYF4: Er-PMMA的折射率随波长变化曲线 (a) 薄膜剖面显微镜照片 (b) 薄膜AFM照片

    Figure 3.  Curve of refraction index of the OA-NaYF4: Er-PMMA with different wavelength. The inset (a) shows the microscope photo of the cross section of the film. The inset (b) shows the AFM image of the surface of the film

    图 4  波导放大器的结构设计 (a) 嵌入式波导结构示意图 (b) 波导中传输的电场强度分布的等高线图 (c) 电场强度的三维曲面图

    Figure 4.  Structure design of waveguide amplifiers. (a) cross section of the embedded waveguides, (b) color contour and (c) three-dimensional surface plot of the distribution of electric field intensity of the waveguide

    图 5  嵌入式结构波导放大器的制备流程图

    Figure 5.  Fabrication process of embedded waveguide amplifiers

    图 6  波导放大器的增益测试 (a) 刻蚀的PMMA凹槽的SEM照片;(b)980 nm泵浦下,器件表面沿波导传输线的上转换发光照片;(c)1480 nm泵浦下,波导放大器的相对增益随泵浦光功率的变化曲线

    Figure 6.  Gain test of the waveguide amplifier. (a) SEM micrograph of a 9 μm wide and 4 μm deep groove of PMMA cladding, (b) photo of up-conversion fluorescence along a waveguide under 980 nm pumping, (c) relative gain as a function of pump power under 1480 nm pumping light

  • [1] CHEN R, TRAN T T D, NG K W, et al.. Nanolasers grown on silicon[J]. Nat. Photonics, 2011, 5:170-175. doi: 10.1038/nphoton.2010.315
    [2] YAN Z, LI C, LUO Y, et al.. Silver hierarchical structures grown on microstructured silicon in chip for microfluidic integrated catalyst and SERS detector[J]. Chin. Opt. Lett., 2015, 13(10):102401-102405. doi: 10.3788/COL
    [3] 周吉, 贺志宏, 于孝军, 等.硅基半导体多场耦合下的光传输及电调控特性分析[J].发光学报, 2016, 37(1):63-73. doi: 10.3788/fgxb

    ZHOU J, HE ZH H, YU X J, et al.. Optical transmission and electrical modulation for silicone semiconductor with multi-field effect[J]. Chinese J. Luminescence, 2016, 37(1):63-73.(in Chinese) doi: 10.3788/fgxb
    [4] 周政, 李金华, 方芳, 等.化学气相沉积法制备Zn2GeO4纳米线及其发光性质的研究[J].中国光学, 2014, 7(4):282-286. http://www.chineseoptics.net.cn/CN/abstract/abstract9129.shtml

    ZHOU ZH, LI J H, FANG F, et al.. Zn2GeO4 nanowires prepared by chemical vapor deposition and its luminescence properties[J]. Chinese Optics, 2014, 7(4):282-286.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9129.shtml
    [5] TING Y T, FENG W F, YANG X Y, et al.. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors[J]. Adv. Mater., 2016, 28(24):4912-4919. doi: 10.1002/adma.v28.24
    [6] YANG S Y, ZHANG Y, LI Q, et al.. Quantum dot semiconductor optical amplifier/silicon external cavity laser for O-band high-speed optical communications[J]. Opt. Eng., 2015, 54(2):026102-5. doi: 10.1117/1.OE.54.2.026102
    [7] SONG S J, YI X K, CHEW S X, et al.. Optical single-sideband modulation based on silicon-on-insulator coupled-resonator optical waveguides[J]. Opt. Eng., 2016, 55(3):031114-6. http://opticalengineering.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/optice/934497/oe_55_3_031114.pdf
    [8] 刘杰, 铁生年, 卢辉东.多信道二维光子晶体滤波器[J].光学精密工程, 2016, 24(5):1021-1027. doi: 10.3788/OPE.

    LIU J, TIE SH N, LU H D. Multi-channel drop filter based on two-dimensional photonic crystal[J]. Opt. Precision Eng., 2016, 24(5):1021-1027.(in Chinese) doi: 10.3788/OPE.
    [9] 管小伟, 吴昊, 戴道锌.硅基混合表面等离子体纳米光波导及集成器件[J].中国光学, 2014, 7(2):181-195. http://www.chineseoptics.net.cn/CN/abstract/abstract9117.shtml

    GUAN X W, WU H, DAI D X. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J]. Chinese Optics, 2014, 7(2):181-195.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9117.shtml
    [10] KOOS C, VORREAU P, VALLAITIS T, et al.. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J]. Nat. Photonics, 2009, 3:216-219. doi: 10.1038/nphoton.2009.25
    [11] SINGH A. Influence of carrier transport on Raman amplification in silicon waveguides[J]. Opt. Express, 2010, 18(12):12569-80. doi: 10.1364/OE.18.012569
    [12] LEI K L, CHOW C F, TSANG K C, et al.. Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers[J]. J Mater. Chem., 2010, 20(35):7526-7529. doi: 10.1039/c0jm00706d
    [13] LIU X Y, CHEN XI, ZHAI X S, et al.. NaYF4 nanocrystals with intense 1530 nm fluorescence for polymer optical waveguide amplifiers[J]. J. Nanosci. Nanotechnol., 2014, 14(5):3499-3502. doi: 10.1166/jnn.2014.7974
    [14] 张丹. 掺铒有机聚合物光波导放大器的理论研究与实验制备[D]. 吉林: 吉林大学, 2008.

    ZHANG D. An experimental and theoretical study on erbium-doped polymer waveguide amplifier[D]. Jilin:Jilin University, 2008.(in Chinese)
    [15] LI T, LIU T J, CHEN C, et al.. Gain characteristics of LaF3:Er, Yb nanoparticle-doped waveguide amplifier[J]. J Nanosci. Nanotechnol., 2011, 11:9409-9414. doi: 10.1166/jnn.2011.5271
    [16] LI T, ZHANG D, CHEN C, et al.. Optical properties of LaF3:Er, Yb nanoparticle-doped organic inorganic hybrid material[J]. J Nanosci. Nanotechnol., 2010, 10:2169-2172. doi: 10.1166/jnn.2010.2115
    [17] ZHAI X S, LIU S S, LIU X Y, et al.. Sub-10 nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53μm fluorescence for polymer-based waveguide amplifiers[J]. J. Mater. Chem. C, 2013, 1(7):1525-1530. doi: 10.1039/c2tc00573e
    [18] ZHAI X S, LI J, LIU S S, et al.. Enhancement of 1.53μm emission band in NaYF4:Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers[J]. Opt. Mater. Express, 2013, 3(2):270-277. doi: 10.1364/OME.3.000270
    [19] LIU S, GUO X, ZHAI X, et al.. Oleic acid-modified LiYF4:Er, Yb nanocrystals for potential optical-amplification applications[J]. J Nanosci. Nanotechnol., 2014, 14(5):3718-3721. doi: 10.1166/jnn.2014.7999
    [20] ZHAO P C, ZHANG M L, WANG T J, et al.. Optical amplification at 1525 nm in BaYF5:20%Yb3+, 2%Er3+ nanocrystals doped SU-8 polymer waveguide[J]. J. Nanomater., 2014, 2014:153028.
    [21] 徐存进. 键合型强荧光稀土聚合物的设计合成与性能研究[D]. 浙江: 浙江大学化学工程与生物工程, 2011.

    XU C J. Synthesis and properties of the highly luminescent bonding-type rare earth polymer[D]. Zhejiang:Department of Chemical and Biological Engineering, Zhejiang University, 2011.(in Chinese)
    [22] PINTUS P, FARALLI S, PASQUALE F D, et al.. Integrated 2.8μm laser source in Al2O3:Er3+ slot waveguide on SOI[J]. J. Lightwave Technol., 2011, 29(8):1206-1212. doi: 10.1109/JLT.2011.2114637
    [23] CHEN C, ZHANG D, LI T, et al.. Erbium-ytterbium codoped waveguide amplifier fabricated with solution-processable complex[J]. Appl. Phys. Lett., 2009, 94(4):041119-3. doi: 10.1063/1.3077152
    [24] SARVAGYA D, ALFONSO R, MICHAEL V, et al.. Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers[J]. J. Lightwave Technol., 2015, 33(21):4471-4477. doi: 10.1109/JLT.2015.2476603
    [25] ZHANG K, YUE Y B, LI T, et al.. Application of ICP etching in fabrication of polymer optical waveguide[J]. Chinese Optics, 2012, 5(1):64-70.
    [26] GHIZAL F A, MAHAJAN S K. Intense cooperative upconversion emission in Yb/Er:TeO2-Li2O-WO3 oxyfluoride glass ceramics[J]. J. Lumin., 2014, 156:97-101. doi: 10.1016/j.jlumin.2014.07.013
  • 加载中
图(6)
计量
  • 文章访问数:  2485
  • HTML全文浏览量:  758
  • PDF下载量:  802
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 修回日期:  2016-12-08
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回