Fabrication of optical waveguide amplifiers based on bonding-type NaYF4: Er nanoparticles-polymer
-
摘要: 为了克服主客掺杂型有源材料均匀性和稳定性差的问题,采用键合掺杂方法,将高温热解法制备的油酸修饰掺铒氟钇钠纳米晶粒与甲基丙烯酸甲酯发生共聚反应,形成键合型有源芯层材料。纳米晶粒均匀固定在聚合物分子链上,抑制了高浓度掺杂时的团聚析出且材料更稳定。纳米粒子在聚合物中的质量百分比达到约1wt%,具有良好的成膜性,用原子力显微镜照片观察薄膜表面粗糙度为1.76 nm。用椭偏仪测量薄膜光学性质,并用柯西色散模型拟合出薄膜折射率随波长的变化关系,材料在1 550 nm信号光波长的折射率为1.485。设计嵌入式波导结构,采用有限元方法进行模式分析和计算光场强度分布。采用紫外光刻和感应耦合等离子体刻蚀工艺制备凹槽形下包层,填充有源材料制备条形波导放大器。实验结果表明,当1 550 nm信号光功率为0.1 mW,1 480 nm泵浦光功率为390 mW时,在1.2 cm长的样品中得到了3.58 dB的信号光相对增益。Abstract: In order to improve the uniformity and stability of the rare earth doped active materials, a copolymerization typed material is presented to fabricate the waveguide amplifiers. Oleic acid (OA)-NaYF4:Er nanoparticles are synthesized by the high-temperature pyrolysis, and the active core materials are prepared by the copolymerization of the outermost oleic acid of the nanoparticles and methylmethacrylate (MMA). The concentration of nanoparticles in the active materials is about 1wt%. Atomic force microscopy image shows that the active film is very smooth, and the root mean square is about 1.76 nm. Ellipsometry is used to measure the refractive index of the material, which is about 1.485 at 1 550 nm wavelength. Embedded single-mode waveguides are designed. The distributions of electric field intensity and the transmission mode are simulated by finite element method. The waveguide amplifiers are prepared by the photolithography and inductively coupled plasma. The experimental results show that the relative gains of 3.58 dB is obtained in a 1.2 cm long device, when the pump power is 390 mW at 1 480 nm wavelength and the signal power is 0.1 mW at 1 550 nm wavelength.
-
Key words:
- optical waveguide amplifier /
- integrated optical devices /
- polymer /
- optical gain
-
图 6 波导放大器的增益测试 (a) 刻蚀的PMMA凹槽的SEM照片;(b)980 nm泵浦下,器件表面沿波导传输线的上转换发光照片;(c)1480 nm泵浦下,波导放大器的相对增益随泵浦光功率的变化曲线
Figure 6. Gain test of the waveguide amplifier. (a) SEM micrograph of a 9 μm wide and 4 μm deep groove of PMMA cladding, (b) photo of up-conversion fluorescence along a waveguide under 980 nm pumping, (c) relative gain as a function of pump power under 1480 nm pumping light
-
[1] CHEN R, TRAN T T D, NG K W, et al.. Nanolasers grown on silicon[J]. Nat. Photonics, 2011, 5:170-175. doi: 10.1038/nphoton.2010.315 [2] YAN Z, LI C, LUO Y, et al.. Silver hierarchical structures grown on microstructured silicon in chip for microfluidic integrated catalyst and SERS detector[J]. Chin. Opt. Lett., 2015, 13(10):102401-102405. doi: 10.3788/COL [3] 周吉, 贺志宏, 于孝军, 等.硅基半导体多场耦合下的光传输及电调控特性分析[J].发光学报, 2016, 37(1):63-73. doi: 10.3788/fgxbZHOU J, HE ZH H, YU X J, et al.. Optical transmission and electrical modulation for silicone semiconductor with multi-field effect[J]. Chinese J. Luminescence, 2016, 37(1):63-73.(in Chinese) doi: 10.3788/fgxb [4] 周政, 李金华, 方芳, 等.化学气相沉积法制备Zn2GeO4纳米线及其发光性质的研究[J].中国光学, 2014, 7(4):282-286. http://www.chineseoptics.net.cn/CN/abstract/abstract9129.shtmlZHOU ZH, LI J H, FANG F, et al.. Zn2GeO4 nanowires prepared by chemical vapor deposition and its luminescence properties[J]. Chinese Optics, 2014, 7(4):282-286.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9129.shtml [5] TING Y T, FENG W F, YANG X Y, et al.. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors[J]. Adv. Mater., 2016, 28(24):4912-4919. doi: 10.1002/adma.v28.24 [6] YANG S Y, ZHANG Y, LI Q, et al.. Quantum dot semiconductor optical amplifier/silicon external cavity laser for O-band high-speed optical communications[J]. Opt. Eng., 2015, 54(2):026102-5. doi: 10.1117/1.OE.54.2.026102 [7] SONG S J, YI X K, CHEW S X, et al.. Optical single-sideband modulation based on silicon-on-insulator coupled-resonator optical waveguides[J]. Opt. Eng., 2016, 55(3):031114-6. http://opticalengineering.spiedigitallibrary.org/pdfaccess.ashx?url=/data/journals/optice/934497/oe_55_3_031114.pdf [8] 刘杰, 铁生年, 卢辉东.多信道二维光子晶体滤波器[J].光学精密工程, 2016, 24(5):1021-1027. doi: 10.3788/OPE.LIU J, TIE SH N, LU H D. Multi-channel drop filter based on two-dimensional photonic crystal[J]. Opt. Precision Eng., 2016, 24(5):1021-1027.(in Chinese) doi: 10.3788/OPE. [9] 管小伟, 吴昊, 戴道锌.硅基混合表面等离子体纳米光波导及集成器件[J].中国光学, 2014, 7(2):181-195. http://www.chineseoptics.net.cn/CN/abstract/abstract9117.shtmlGUAN X W, WU H, DAI D X. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J]. Chinese Optics, 2014, 7(2):181-195.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9117.shtml [10] KOOS C, VORREAU P, VALLAITIS T, et al.. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J]. Nat. Photonics, 2009, 3:216-219. doi: 10.1038/nphoton.2009.25 [11] SINGH A. Influence of carrier transport on Raman amplification in silicon waveguides[J]. Opt. Express, 2010, 18(12):12569-80. doi: 10.1364/OE.18.012569 [12] LEI K L, CHOW C F, TSANG K C, et al.. Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers[J]. J Mater. Chem., 2010, 20(35):7526-7529. doi: 10.1039/c0jm00706d [13] LIU X Y, CHEN XI, ZHAI X S, et al.. NaYF4 nanocrystals with intense 1530 nm fluorescence for polymer optical waveguide amplifiers[J]. J. Nanosci. Nanotechnol., 2014, 14(5):3499-3502. doi: 10.1166/jnn.2014.7974 [14] 张丹. 掺铒有机聚合物光波导放大器的理论研究与实验制备[D]. 吉林: 吉林大学, 2008.ZHANG D. An experimental and theoretical study on erbium-doped polymer waveguide amplifier[D]. Jilin:Jilin University, 2008.(in Chinese) [15] LI T, LIU T J, CHEN C, et al.. Gain characteristics of LaF3:Er, Yb nanoparticle-doped waveguide amplifier[J]. J Nanosci. Nanotechnol., 2011, 11:9409-9414. doi: 10.1166/jnn.2011.5271 [16] LI T, ZHANG D, CHEN C, et al.. Optical properties of LaF3:Er, Yb nanoparticle-doped organic inorganic hybrid material[J]. J Nanosci. Nanotechnol., 2010, 10:2169-2172. doi: 10.1166/jnn.2010.2115 [17] ZHAI X S, LIU S S, LIU X Y, et al.. Sub-10 nm BaYF5:Yb3+, Er3+ core-shell nanoparticles with intense 1.53μm fluorescence for polymer-based waveguide amplifiers[J]. J. Mater. Chem. C, 2013, 1(7):1525-1530. doi: 10.1039/c2tc00573e [18] ZHAI X S, LI J, LIU S S, et al.. Enhancement of 1.53μm emission band in NaYF4:Er3+, Yb3+, Ce3+ nanocrystals for polymer-based optical waveguide amplifiers[J]. Opt. Mater. Express, 2013, 3(2):270-277. doi: 10.1364/OME.3.000270 [19] LIU S, GUO X, ZHAI X, et al.. Oleic acid-modified LiYF4:Er, Yb nanocrystals for potential optical-amplification applications[J]. J Nanosci. Nanotechnol., 2014, 14(5):3718-3721. doi: 10.1166/jnn.2014.7999 [20] ZHAO P C, ZHANG M L, WANG T J, et al.. Optical amplification at 1525 nm in BaYF5:20%Yb3+, 2%Er3+ nanocrystals doped SU-8 polymer waveguide[J]. J. Nanomater., 2014, 2014:153028. [21] 徐存进. 键合型强荧光稀土聚合物的设计合成与性能研究[D]. 浙江: 浙江大学化学工程与生物工程, 2011.XU C J. Synthesis and properties of the highly luminescent bonding-type rare earth polymer[D]. Zhejiang:Department of Chemical and Biological Engineering, Zhejiang University, 2011.(in Chinese) [22] PINTUS P, FARALLI S, PASQUALE F D, et al.. Integrated 2.8μm laser source in Al2O3:Er3+ slot waveguide on SOI[J]. J. Lightwave Technol., 2011, 29(8):1206-1212. doi: 10.1109/JLT.2011.2114637 [23] CHEN C, ZHANG D, LI T, et al.. Erbium-ytterbium codoped waveguide amplifier fabricated with solution-processable complex[J]. Appl. Phys. Lett., 2009, 94(4):041119-3. doi: 10.1063/1.3077152 [24] SARVAGYA D, ALFONSO R, MICHAEL V, et al.. Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers[J]. J. Lightwave Technol., 2015, 33(21):4471-4477. doi: 10.1109/JLT.2015.2476603 [25] ZHANG K, YUE Y B, LI T, et al.. Application of ICP etching in fabrication of polymer optical waveguide[J]. Chinese Optics, 2012, 5(1):64-70. [26] GHIZAL F A, MAHAJAN S K. Intense cooperative upconversion emission in Yb/Er:TeO2-Li2O-WO3 oxyfluoride glass ceramics[J]. J. Lumin., 2014, 156:97-101. doi: 10.1016/j.jlumin.2014.07.013