留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近红外光热转换纳米晶研究进展

李欣远 纪穆为 王虹智 涂国鹏 万晓冬 刘佳佳 刘佳 徐萌 张加涛

李欣远, 纪穆为, 王虹智, 涂国鹏, 万晓冬, 刘佳佳, 刘佳, 徐萌, 张加涛. 近红外光热转换纳米晶研究进展[J]. 中国光学(中英文), 2017, 10(5): 541-554. doi: 10.3788/CO.20171005.0541
引用本文: 李欣远, 纪穆为, 王虹智, 涂国鹏, 万晓冬, 刘佳佳, 刘佳, 徐萌, 张加涛. 近红外光热转换纳米晶研究进展[J]. 中国光学(中英文), 2017, 10(5): 541-554. doi: 10.3788/CO.20171005.0541
LI Xin-yuan, JI Mu-wei, WANG Hong-zhi, TU Guo-peng, WAN Xiao-dong, LIU Jia-jia, LIU Jia, XU Meng, ZHANG Jia-tao. Research progress of near-infrared photothermal conversion nanocrystals[J]. Chinese Optics, 2017, 10(5): 541-554. doi: 10.3788/CO.20171005.0541
Citation: LI Xin-yuan, JI Mu-wei, WANG Hong-zhi, TU Guo-peng, WAN Xiao-dong, LIU Jia-jia, LIU Jia, XU Meng, ZHANG Jia-tao. Research progress of near-infrared photothermal conversion nanocrystals[J]. Chinese Optics, 2017, 10(5): 541-554. doi: 10.3788/CO.20171005.0541

近红外光热转换纳米晶研究进展

基金项目: 

国家自然科学基金项目 21643003

国家自然科学基金项目 51631001

国家自然科学基金项目 91323301

国家自然科学基金项目 51501010

国家自然科学基金项目 51372025

详细信息
    作者简介:

    李欣远(1991—),男,黑龙江齐齐哈尔人,博士研究生,2014年于哈尔滨工业大学获得学士学位,2015年于英国曼彻斯特大学获得硕士学位,主要从事纳米晶合成方面的研究。E-mail:137419214@qq.com

    徐萌(1986—), 男,黑龙江哈尔滨人,讲师,2009年于浙江大学获得学士学位,2014年于中科院国家纳米科学中心获得博士学位,主要从事纳米晶合成及生物应用方面的研究

    张加涛(1975—),男,山东临沂人,教授,博士生导师,2000年于山东建材学院获得学士学位,2003年于在北京理工大学获得硕士学位,2006年于清华大学获得博士学位,主要从事多功能低维纳米复合材料的形貌设计、合成、光电性能及其在光电信息、能源转化与存储、光催化应用方面的研究

    通讯作者:

    徐萌, E-mail:xumeng@bit.edu.cn

    张加涛, E-mail:zhangjt@bit.edu.cn

  • 中图分类号: TP394.1;TH691.9

Research progress of near-infrared photothermal conversion nanocrystals

Funds: 

National Natural Science Foundation of China 21643003

National Natural Science Foundation of China 51631001

National Natural Science Foundation of China 91323301

National Natural Science Foundation of China 51501010

National Natural Science Foundation of China 51372025

More Information
  • 摘要: 近红外光热转换纳米晶材料因其在近红外区(普遍位于780~1 400 nm)的高效光热转换性能,已广泛应用于光热杀死癌细胞、肿瘤治疗、海水淡化等领域。因其多样的液相制备方法和形貌控制、纳米结构复合、逐渐提高的光热转换效率以及表面易于药物修饰等优点,该材料在光热成像诊断、光热治疗等领域引起了学术界的广泛关注。本文综述了近红外光热转换纳米晶的研究进展,主要包括贵金属纳米晶、铜硫族半导体纳米晶、碳相关纳米晶以及这些纳米晶材料构成的复合结构,同时介绍了具有较高光热转换效率的表面等离子体共振(SPR)材料的研究进展,尤其是双模态SPR性质的耦合在光热转换领域的应用前景。基于其性能协同耦合的特性,双模态表面等离子体共振耦合的复合纳米晶将是近几年光热转换纳米晶发展的重要方向。

     

  • 图 1  纳米粒子在光照情况下的示意图[3]

    Figure 1.  Schematic diagram of nanoparticle when irradiated by a light beam[3]

    图 2  不同形貌的金纳米晶及对应光谱吸收图。(a, c)Au纳米棒(长径比为5.2) 的低分辨透射电子显微镜图片,以及不同长径比的Au纳米棒的消光光谱图[10]; (b, d)Au纳米笼的扫描电子显微镜图,以及置换反应程度的吸收光谱图[16]

    Figure 2.  LRTEM images of Au with various types of nanostructures and their plasmonic absorbance respectively. (a, c)LRTEM image of Au nanorods with aspect ratio 5.2 and the extinction of Au NRs with different aspect ratio[10]; (b, d)LRTEM image of Au nanocages and their plasmonic absorbance[16]

    图 3  (a)疏水性Cu7S4纳米颗粒的低分辨透射电子显微镜图; (b)亲水性的Cu7S4纳米晶的低分辨透射显微镜图; (c)亲水性Cu7S4纳米晶形成机理; (d)两种材料的在808 nm的激光照射下的光热转换图谱; (e)光热成像指纹检测示意图[6]

    Figure 3.  (a)LRTEM image of hydrophobic Cu7S4 NPs. (b)LRTEM image of amphiphilic Cu7S4 NCs. (c)Fabrication strategy for Cu7S4 NCs. (d)PT activity of Cu7S4 NPs and NCs. (e)Schematic representation of photothermal imaging process[6]

    图 4  (a)Au-Cu9S5异质二聚体纳米晶材料; (b)Au-Cu9S5元素分部图; (c)Au颗粒,Cu9S5纳米颗粒,Au-Cu9S5异质结构的UV-Vis吸收示意图; (d)Au-Cu9S5异质结构和Au与Cu9S5混合机构的光热准换效率对比图[33]

    Figure 4.  (a)Schematic representation of Au-Cu9S5 dual plasmonic hybrid NCs when irradiated by laser. (b)STEM image of Au-Cu9S5 NCs and their EDS element mapping images. (c)Molar extinction coefficient of Au-Cu9S5, Cu9S5 and Au colloidal respectively. (d)PT activity comparison of Au-Cu9S5 and physical mixture of Au and Cu9S5 at same concentration when irradiated by 808 nm, 0.7 W/cm2 laser[33]

    图 5  (a)Au纳米颗粒到Au@Cu2-xS NCs合成示意图; (b, c)Au@Cu2-xS纳米晶的低分辨透射电子显微镜图; (d)Au@Cu2-xS纳米棒的低分辨投射电子显微镜图[34]

    Figure 5.  (a)Schematic of the synthesis method of Au@Cu2-xS NCs from Au NPs. (b, c)LRTEM of Au@Cu2-xS NCs. (d)LRTEM image of Au@Cu2-xS NRs[34]

    图 6  (a)Au@Cu2-xS纳米棒高分辨透射电子显微镜图; (b~d)Au@Cu2-xS纳米颗粒高分辨透射电子显微镜图[34]

    Figure 6.  (a)HRTEM images of Au@Cu2-xS NRs. (b-d)LRTEM images of Au@Cu2-xS NPs [34]

    图 7  (a)Au@Cu2-xS纳米棒,Au@Cu2-xS纳米颗粒,Au纳米棒以及Cu2-xS纳米颗粒溶胶的UV-Vis-NIR光谱图; (b)不同浓度的Au@Cu2-xS纳米棒胶体在0.7 W/cm2 1 064 nm的激光照射下的光热转换曲线; (c)Au@Cu2-xS与不同配比的Au,Cu2-xS的混合胶体的光热转换曲线对比; (d)Au@Cu2-xS纳米棒胶体在0.7 W/cm2 1 064 nm激光照射下的光热转换循环测试; (e)Au@Cu2-xS纳米棒和Cu2-xS纳米晶在808nm和1 064nm激光照射下赫拉细胞存活率对比[34]

    Figure 7.  (a)UV-Vis-NIR spectra of the as prepared Au@Cu2-xS nanorods, Au@Cu2-xS NPs, Au nanorods and Cu2-xS NPs colloidal respectively. (b)PT conversion curve of Au@Cu2-xS NRs by 0.7 W/cm2 1 064 nm laser. (c)PT activity of Au NRs, Cu2-xS nanoparticles and their physical mixtures for various ratios compared with Au@Cu2-xS nanorods. (d)PT cycling test of Au@Cu2-xS nanorods irradiated by 0.7 W/cm2 1 064 nm laser. (e)Hela cell viability of Au@Cu2-xS NRs under irradiation of 808 nm and 1 064 nm laser irradiation compared to Cu2-xS NPs[34]

    图 8  (a)Au@Ag3AuTe2纳米晶效果图; (b)Au@Ag3AuTe2纳米晶的低分辨透射电子显微镜和高分辨透射电子显微镜图; (c, d)不同浓度下Au@Ag3AuTe2纳米晶在808 nm和1 064 nm激光照射下的光热转换曲线[52]

    Figure 8.  (a)Scheme of Au@Ag3AuTe2 NCs. (b)LRTEM and HRTEM images of Au@Ag3AuTe2 NCs. (c, d)PT conversion characterizations of Au@Ag3AuTe2 NCs colloid with various concentrations by 0.7 W/cm2 808 nm (c), 0.7 W/cm2 1 064 nm (d)[52]

    图 9  (a)Au@MS(M=Cd, Sn) yolk-shell纳米晶合成过程示意图。(b, c)Au@CdS与Au@SnS yolk-shell纳米晶分别的低分辨透射电子显微镜图[36]

    Figure 9.  (a)Synthesis scheme of Au@MS(M=Cd, Sn) yolk-shell NCs. (b, c)LRTEM images of Au@CdS and Au@SnS yolk-shell NCs, respectively[36]

    图 10  (a)Cu2O@MS(M=Cd, Zn, Sn) yolk-shell纳米晶合成过程示意图; (b)Cu2O@CdS yolk-shell纳米晶低分辨透射电子显微镜图; (c)Cu2O@CdS yolk-shell纳米晶高分辨透射电子显微镜图; (d)Cu2O@CdS yolk-shell纳米晶STEM模式下的元素分布图[36]

    Figure 10.  (a)Synthesis scheme of Cu2O@MS (M=Cd, Zn, Sn) yolk-shell NCs. (b)LRTEM image of Cu2O@CdS yolk-shell NCs. (c)HRTEM image of Cu2O@CdS yolk-shell NCs. (d)Element mapping of Cu2O@CdS yolk-shell NCs[36]

    图 11  PEG包附的石墨烯纳米片(NGS-PEG)。(a)Cy7修饰的NGS-PEG示意图; (b)NGS-PEG的原子力显微镜图; (c)NGS-PEG的UV-Vis-NIR吸收光谱图'; (d)808 nm,2 W/cm2激光照射下NGS-PEG的光热转换图谱[42]

    Figure 11.  NGS coated with PEG. (a)schematic diagram of NGS-PEG labeled with Cy7. (b)AFM image of NGS-PEG. (c)UV-Vis-NIR absorbance of NGS-PEG solution. (d)PT activity of NGS-PEG under 808 nm 2 W/cm2 laser treatment[42]

  • [1] CHEN X, CHEN Y, YAN M, et al.. Nanosecond photothermal effects in plasmonic nanostructures[J]. ACS Nano, 2012, 6(3):2550-2557. doi: 10.1021/nn2050032
    [2] CHENG L, WANG C, FENG L, et al.. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114(21):10869-10939. doi: 10.1021/cr400532z
    [3] JAQUE D, MARTINEZ MAESTRO L, DEL ROSAL B, et al.. Nanoparticles for photothermal therapies[J]. Nanoscale, 2014, 6(16):9494-9530. doi: 10.1039/C4NR00708E
    [4] ZHU G, XU J, ZHAO W, et al.. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(46):31716-31721. http://www.ncbi.nlm.nih.gov/pubmed/27801572
    [5] WANG X, OU G, WANG N, et al.. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(14):9194-9199. http://www.ncbi.nlm.nih.gov/pubmed/27019007
    [6] CUI J, XU S, GUO C, et al.. Highly efficient photothermal semiconductor nanocomposites for photothermal imaging of latent fingerprints[J]. Analytical Chemistry, 2015, 87(22):11592-11598. doi: 10.1021/acs.analchem.5b03652
    [7] CHEN G, ROY I, YANG C, et al.. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy[J]. Chemical Reviews, 2016, 116(5):2826-2885. doi: 10.1021/acs.chemrev.5b00148
    [8] CHENG L, YANG K, LI Y, et al.. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J]. Angewandte Chemie International Edition, 2011, 50(32):7385-7390. doi: 10.1002/anie.v50.32
    [9] ZHOU M, ZHANG R, HUANG M, et al.. A chelator-free multifunctional[64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy[J]. J. American Chemical Society, 2010, 132(43):15351-15358. doi: 10.1021/ja106855m
    [10] HUANG X, NERETINA S, EL-SAYED M A. Gold nanorods:from synthesis and properties to biological and biomedical applications[J]. Advanced Materials, 2009, 21(48):4880-4910. doi: 10.1002/adma.200802789
    [11] MOU J, CHEN Y, MA M, et al.. Facile synthesis of liposome/Cu2-xS-based nanocomposite for multimodal imaging and photothermal therapy[J]. Science China Materials, 2015, 58(4):294-301. doi: 10.1007/s40843-015-0044-3
    [12] 王英帅, 周颖, 王珺楠, 等.金纳米棒核/二氧化硅壳纳米复合结构的可控制备及细胞成像[J].中国光学, 2013, 6(5):743-749. http://www.chineseoptics.net.cn/CN/abstract/abstract9059.shtml

    WANG Y SH, ZHOU Y, WANG J, et al.. Controlled synthesis and cell imaging of gold nanorod-silica core-shell nanoparticles[J]. Chinese Optics, 2013, 6(5):743-749.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9059.shtml
    [13] CHAI Z, HU X, LU W. Cell membrane-coated nanoparticles for tumor-targeted drug delivery[J]. Science China Materials, 2017:1-7. doi: 10.1007/s40843-016-5163-4
    [14] PITSILLIDES C M, JOE E K, WEI X, et al.. Selective cell targeting with light-absorbing microparticles and nanoparticles[J]. Biophysical Journal, 2003, 84(6):4023-4032. doi: 10.1016/S0006-3495(03)75128-5
    [15] LOO C, LOWERY A, HALAS N, et al.. Immunotargeted nanoshells for integrated cancer imaging and therapy[J]. Nano Letters, 2005, 5(4):709-711. doi: 10.1021/nl050127s
    [16] SKRABALAK S E, CHEN J, SUN Y, et al.. Gold nanocages:synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 41(12):1587-1595. doi: 10.1021/ar800018v
    [17] EL-SAYED I H, HUANG X, EL-SAYED M A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles[J]. Cancer Letters, 2006, 239(1):129-135. doi: 10.1016/j.canlet.2005.07.035
    [18] NAM J, WON N, JIN H, et al.. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy[J]. J. American Chemical Society, 2009, 131(38):13639-13645. doi: 10.1021/ja902062j
    [19] GOBIN A M, LEE M H, HALAS N J, et al.. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy[J]. Nano Letters, 2007, 7(7):1929-1934. doi: 10.1021/nl070610y
    [20] HUANG W, QIAN W, EL-SAYED M A. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance[J]. J. American Chemical Society, 2006, 128(41):13330-13331. doi: 10.1021/ja064328p
    [21] VON MALTZAHN G, PARK J-H, AGRAWAL A, et al.. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas[J]. Cancer Research, 2009, 69(9):3892-3900. doi: 10.1158/0008-5472.CAN-08-4242
    [22] CHEN H, SHAO L, MING T, et al.. understanding the photothermal conversion efficiency of gold nanocrystals[J]. Small, 2010, 6(20):2272-2280. doi: 10.1002/smll.v6:20
    [23] LU W, SINGH A K, KHAN S A, et al.. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced raman spectroscopy[J]. J. American Chemical Society, 2010, 132(51):18103-18114. doi: 10.1021/ja104924b
    [24] YUAN H, FALES A M, VO-DINH T. TAT peptide-functionalized gold nanostars:enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance[J]. J. American Chemical Society, 2012, 134(28):11358-11361. doi: 10.1021/ja304180y
    [25] PELAZ B, GRAZU V, IBARRA A, et al.. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications[J]. Langmuir, 2012, 28(24):8965-8970. doi: 10.1021/la204712u
    [26] JANA N R, GEARHEART L, MURPHY C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Advanced Materials, 2001, 13(18):1389-1393. doi: 10.1002/(ISSN)1521-4095
    [27] NIKOOBAKHT B, EL-SAYED M A. Preparation and growth mechanism of gold nanorods(NRs) using seed-mediated growth method[J]. Chemistry of Materials, 2003, 15(10):1957-1962. doi: 10.1021/cm020732l
    [28] TIAN Q, JIANG F, ZOU R, et al.. Hydrophilic Cu9S5 nanocrystals:a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano, 2011, 5(12):9761-9771. doi: 10.1021/nn203293t
    [29] TIAN Q, TANG M, SUN Y, et al.. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Advanced Materials, 2011, 23(31):3542-3547. doi: 10.1002/adma.201101295
    [30] WANG S, RIEDINGER A, LI H, et al.. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J]. ACS Nano, 2015, 9(2):1788-1800. doi: 10.1021/nn506687t
    [31] KRIEGEL I, RODR GUEZ-FERN NDEZ J, WISNET A, et al.. Shedding light on vacancy-doped copper chalcogenides:shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances[J]. ACS Nano, 2013, 7(5):4367-4377. doi: 10.1021/nn400894d
    [32] HUANG S, LIU J, HE Q, et al. Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for nir photo-triggered drug release[J]. Nano Research, 2015, 8(12):4038-4047. doi: 10.1007/s12274-015-0905-9
    [33] DING X, LIOW C H, ZHANG M, et al.. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window[J]. Journal of the American Chemical Society, 2014, 136(44):15684-15693. doi: 10.1021/ja508641z
    [34] JI M, XU M, ZHANG W, et al.. Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency[J]. Advanced Materials, 2016, 28(16):3094-3101. doi: 10.1002/adma.201503201
    [35] YU X, BI J, YANG G, et al.. Synergistic effect induced high photothermal performance of Au nanorod@Cu7S4 Yolk-Shell nanooctahedron particles[J]. The Journal of Physical Chemistry C, 2016, 120(43):24533-24541. doi: 10.1021/acs.jpcc.6b06213
    [36] JI M, LI X, WANG H, et al.. Versatile synthesis of yolk/shell hybrid nanocrystals via more kinds of ions exchange reactions:towards novel metal/semiconductor and semiconductor/semiconductor conformations[J]. Nano Research, 2017, DOI: 10.1007/s12274-017-1508-4.
    [37] KAM N W S, O'CONNELL M, WISDOM J A, et al.. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proceedings of the National Academy of Sciences, 2005, 102(33):11600-11605. doi: 10.1073/pnas.0502680102
    [38] MOON H K, LEE S H, CHOI H C, et al.. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes[J]. ACS Nano, 2009, 3(11):3707-3713. doi: 10.1021/nn900904h
    [39] BURKE A, DING X, SINGH R, et al.. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation[J]. Proceedings of the National Academy of Sciences, 2009, 106(31):12897-12902. doi: 10.1073/pnas.0905195106
    [40] GHOSH S, DUTTA S, GOMES E, et al.. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes[J]. ACS Nano, 2009, 3(9):2667-2673. doi: 10.1021/nn900368b
    [41] LIU X, TAO H, YANG K, et al.. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors[J]. Biomaterials, 2011, 32(1):144-151. doi: 10.1016/j.biomaterials.2010.08.096
    [42] YANG K, ZHANG S, ZHANG G, et al.. Graphene in mice:ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Letters, 2010, 10(9):3318-3323. doi: 10.1021/nl100996u
    [43] YANG K, WAN J, ZHANG S, et al.. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power[J]. Biomaterials, 2012, 33(7):2206-2214. doi: 10.1016/j.biomaterials.2011.11.064
    [44] KIM J.-W, GALANZHA E I, SHASHKOV E V, et al.. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nat Nano, 2009, 4(10):688-694. doi: 10.1038/nnano.2009.231
    [45] WANG C, LI J, AMATORE C, et al.. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells[J]. Angewandte Chemie International Edition, 2011, 50(49):11644-11648. doi: 10.1002/anie.201105573
    [46] MA X, TAO H, YANG K, et al.. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging[J]. Nano Research, 2012, 5(3):199-212. doi: 10.1007/s12274-012-0200-y
    [47] CHEN W, ZHANG X, AI F, et al.. Graphitic carbon nanocubes derived from ZIF-8 for photothermal therapy[J]. Inorganic Chemistry, 2016, 55(12):5750-5752. doi: 10.1021/acs.inorgchem.6b01013
    [48] SONG X, CHEN Q, LIU Z, et al.. Recent advances in the development of organic photothermal nano-agents[J]. Nano Research, 2015, 8(2):340-354. doi: 10.1007/s12274-014-0620-y
    [49] 苏彦勋, 柯沅锋, 蔡士良, 等.层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池[J].中国光学, 2014, 7(2):267-273. http://www.chineseoptics.net.cn/CN/abstract/abstract9127.shtml

    SU Y X, KE Y F, CAI SH L, et al.. Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell[J]. Chinese Optics, 2014, 7(2):267-273.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9127.shtml
    [50] 秦沛, 任玉, 刘丽炜, 等.金属纳米颗粒等离激元共振增强非线性介质谐波的发展现状[J].中国光学, 2016, 9(2):213-225. http://www.chineseoptics.net.cn/CN/abstract/abstract9415.shtml

    QIN P, REN Y, LIU L W, et al.. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium[J]. Chinese Optics, 2016, 9(2):213-225.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9415.shtml
    [51] ROPER D K, AHN W, HOEPFNER M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(9):3636-3641. doi: 10.1021/jp064341w
    [52] CHEN T, XU M, JI M, et al.. Aqueous phase synthesis of Au@Ag3AuX2(X=Se, Te) core/shell nanocrystals and their broad NIR photothermal conversion application[J]. Cryst. Eng. Comm., 2016, 18(29):5418-5422. doi: 10.1039/C6CE00609D
    [53] KIM J, PARK J, KIM H, et al.. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA[J]. Biomaterials, 2013, 34(29):7168-7180. doi: 10.1016/j.biomaterials.2013.05.072
    [54] JIANG R, LI B, FANG C, et al.. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Advanced Materials, 2014, 26(31):5274-5309. doi: 10.1002/adma.201400203
    [55] COZZOLI P D, PELLEGRINO T, MANNA L. Synthesis, properties and perspectives of hybrid nanocrystal structures[J]. Chemical Society Reviews, 2006, 35(11):1195-1208. doi: 10.1039/b517790c
    [56] JANSSENS S, WILLIAMS G V M, CLARKE D. Systematic study of sensitized LaF3:Eu3+ nanoparticles[J]. J. Applied Physics, 2011, 109(2):023506. doi: 10.1063/1.3531994
    [57] ZHANG Q, LEE I, JOO J B, et al.. Core-Shell nanostructured catalysts[J]. Accounts of Chemical Research, 2013, 46(8):1816-1824. doi: 10.1021/ar300230s
    [58] HU Y, LIU Y, LI Z, et al.. Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells:synthesis and photo-enhanced catalysis[J]. Advanced Functional Materials, 2014, 24(19):2828-2836. doi: 10.1002/adfm.v24.19
    [59] SHEEHAN S W, NOH H, BRUDVIG G W, et al.. Plasmonic enhancement of dye-sensitized solar cells using Core-Shell-Shell nanostructures[J]. The Journal of Physical Chemistry C, 2013, 117(2):927-934. doi: 10.1021/jp311881k
    [60] HALAS N J, LAL S, CHANG W S, et al.. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961. doi: 10.1021/cr200061k
    [61] GUI J, JI M, LIU J, et al.. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures:old concept, new applications[J]. Angewandte Chemie International Edition, 2015, 54(12):3683-3687. doi: 10.1002/anie.201410053
    [62] ZHANG J, TANG Y, LEE K, et al.. Nonepitaxial growth of hybrid Core-Shell nanostructures with large lattice mismatches[J]. Science, 2010, 327(5973):1634-1638. doi: 10.1126/science.1184769
    [63] YU Z, XIONG S, JIANG J, et al.. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals:the role of reactivity between Zn and S[J]. J. American Chemical Society, 2013, 135(49):18377-18384. doi: 10.1021/ja405962k
    [64] WANG X, FENG J, BAI C, et al.. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical Review, 2016, 116:10983-11060. doi: 10.1021/acs.chemrev.5b00731
    [65] KONG L, CHEN W, MA D Y, et al.. Size control of Au@Cu2O octahedra for excellent photocatalytic performance[J]. J. Materials Chemistry, 2012, 22(2):719-724. doi: 10.1039/C1JM13672K
    [66] KUO C H, CHU Y T, SONG Y F, et al.. Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission X-ray microscopy study[J]. Advanced Functional Materials, 2011, 21(4):792-797. doi: 10.1002/adfm.201002108
    [67] HU H, LIU J, YU J, et al.. Synthesis of Janus Au@periodic mesoporous organosilica(PMO) nanostructures with precisely controllable morphology:a seed-shape defined growth mechanism[J]. Nanoscale, 2017, 9:4826-4834. doi: 10.1039/C7NR01047H
  • 加载中
图(11)
计量
  • 文章访问数:  3913
  • HTML全文浏览量:  1591
  • PDF下载量:  652
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-18
  • 修回日期:  2017-05-19
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回