留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed

TIAN Hui-jun LIU Qiao-li YUE Heng HU An-qi GUO Xia

田慧军, 刘巧莉, 岳恒, 胡安琪, 郭霞. 高比探测率和高速石墨烯/n-GaAs复合结构的光电探测器[J]. 中国光学(中英文), 2021, 14(1): 206-212. doi: 10.37188/CO.2020-0153
引用本文: 田慧军, 刘巧莉, 岳恒, 胡安琪, 郭霞. 高比探测率和高速石墨烯/n-GaAs复合结构的光电探测器[J]. 中国光学(中英文), 2021, 14(1): 206-212. doi: 10.37188/CO.2020-0153
TIAN Hui-jun, LIU Qiao-li, YUE Heng, HU An-qi, GUO Xia. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212. doi: 10.37188/CO.2020-0153
Citation: TIAN Hui-jun, LIU Qiao-li, YUE Heng, HU An-qi, GUO Xia. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212. doi: 10.37188/CO.2020-0153

高比探测率和高速石墨烯/n-GaAs复合结构的光电探测器

详细信息
  • 中图分类号: TN364

Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed

doi: 10.37188/CO.2020-0153
Funds: Supported by the National Key Research and Development Program of China (No. 2017YFF0104801); National Natural Science Foundation of China (No. 61804012)
More Information
    Author Bio:

    TIAN Hui-jun (1984—), PhD student, Institute of Laser Engineering, Beijing University of Technology, China. His research interests focus on graphene-based photodetectors. E-mail: tianhj@emails.bjut.edu.cn

    GUO Xia (1974—), Professor, School of Electronic Engineering, Beijing University of Posts and Telecommunications, China. Her research interests are on high-response PIN diodes, high speed VCSELs and ultrahigh-sensitive photodetectors in Graphene. E-mail: guox@bupt.edu.cn

    Corresponding author: anqihu@bupt.edu.cnguox@bupt.edu.cn
  • 摘要: 混合结构的石墨烯/半导体光电晶体管因其超高的响应度而备受关注。然而,该类光电晶体管通过源-漏电极测试得到的比探测率(D*)容易受到1/f噪声的限制。本文制备了混合结构的石墨烯/GaAs光电探测器,通过源-栅电极测得D*大约为1.82×1011 Jones,与通过源-漏电极测量相比,D*提高了约500倍。这可归因于界面上肖特基势垒对载流子俘获和释放过程的屏蔽作用。此外,探测器的上升时间和下降时间分别是4 ms和37 ms,响应速度相应地提高了2个数量级。该工作为制备高比探测率和高速的光电探测器提供了一种新的思路。

     

  • Figure 1.  (a) Schematic diagram of the graphene/n-GaAs photodetector. The optical and electrical performances were measured by source-gate electrodes. (b) Energy band diagram of the graphene/n-GaAs heterojunction with the Schottky barrier height ΦB of the graphene/GaAs junction of ~0.7 eV. The interface states are depicted at the interface, illustrating that the carrier trapped photons at the graphene/GaAs interface during carrier transport through the junction. (c) Measurement result of the Raman spectrum of graphene on the GaAs substrate. (d) Spectral response of the photodiode under zero bias voltage.

    Figure 2.  (a) Current versus voltage curves of the device under different light powers. (b) The relationship between photocurrent and photovoltage (Voc) with the incident light’s power in the self-driven mode. (c) Responsivity and D* versus illumination power under a zero bias voltage. (d) Illustration of the carrier trapping and detrapping processes at the interface of the graphene/GaAs interface, which is the main source of 1/f noise.

    Figure 3.  The response time of the photodiode at a zero bias voltage under a laser power of 136 μW where τr is ~4 ms and τf is ~37 ms.

  • [1] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793. doi: 10.1038/nnano.2014.215
    [2] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965
    [3] GUO X T, WANG W H, NAN H Y, et al. High-performance graphene photodetector using interfacial gating[J]. Optica, 2016, 3(10): 1066-1070. doi: 10.1364/OPTICA.3.001066
    [4] GREBENCHUKOV A N, ZAITSEV A D, KHODZITSKY M K. Optically controlled narrowband terahertz switcher based on graphene[J]. Chinese Optics, 2018, 11(2): 166-173. doi: 10.3788/co.20181102.0166
    [5] HU A Q, TIAN H J, LIU Q L, et al. Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors[J]. Advanced Optical Materials, 2019, 7(8): 1801792. doi: 10.1002/adom.201801792
    [6] LIU Q L, TIAN H J, LI J W, et al. Hybrid graphene/Cu2O quantum dot photodetectors with ultrahigh responsivity[J]. Advanced Optical Materials, 2019, 7(20): 1900455. doi: 10.1002/adom.201900455
    [7] GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. doi: 10.1126/science.1176706
    [8] WANG G SH, LU H, CHEN D J, et al. High quantum efficiency GaN-based p-i-n ultraviolet photodetectors prepared on patterned sapphire substrates[J]. IEEE Photonics Technology Letters, 2013, 25(7): 652-654. doi: 10.1109/LPT.2013.2248056
    [9] BALANDIN A A. Low-frequency 1/f noise in graphene devices[J]. Nature Nanotechnology, 2013, 8(8): 549-555. doi: 10.1038/nnano.2013.144
    [10] LU Y H, FENG S R, WU ZH Q, et al. Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity[J]. Nano Energy, 2018, 47: 140-149. doi: 10.1016/j.nanoen.2018.02.056
    [11] TIAN H J, HU A Q, LIU Q L, et al. Interface-induced high responsivity in hybrid graphene/GaAs photodetector[J]. Advanced Optical Materials, 2020, 8(8): 1901741. doi: 10.1002/adom.201901741
    [12] HU W D, LI Q, CHEN X SH, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese)
    [13] CHEN Y Y, WANG C H, CHEN G S, et al. Self-powered n-MgxZn1−xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect[J]. Nano Energy, 2015, 11: 533-539. doi: 10.1016/j.nanoen.2014.09.037
    [14] FAUSKE V T, HUH J, DIVITINI G, et al. In situ heat-induced replacement of GaAs nanowires by Au[J]. Nano Letters, 2016, 16(5): 3051-3057. doi: 10.1021/acs.nanolett.6b00109
    [15] ZHANG X T, ZHANG L N, CHAN M S. Doping enhanced barrier lowering in graphene-silicon junctions[J]. Applied Physics Letters, 2016, 108(26): 263502. doi: 10.1063/1.4954799
    [16] LI X Q, LIN SH SH, LIN X, et al. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector[J]. Optics Express, 2016, 24(1): 134-145. doi: 10.1364/OE.24.000134
    [17] CANCADO L G, JORIO A, FERREIRA E H M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011, 11(8): 3190-3196. doi: 10.1021/nl201432g
    [18] HAO Y F, WANG Y Y, WANG L, et al. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy[J]. Small, 2010, 6(2): 195-200. doi: 10.1002/smll.200901173
    [19] DI BARTOLOMEO A. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction[J]. Physics Reports, 2016, 606: 1-58. doi: 10.1016/j.physrep.2015.10.003
    [20] TONGAY S, LEMAITRE M, MIAO X, et al. Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes[J]. Physics Review X, 2012, 2(1): 011002.
    [21] LIN F, CHEN SH W, MENG J, et al. Graphene/GaN diodes for ultraviolet and visible photodetectors[J]. Applied Physics Letters, 2014, 105(7): 073103. doi: 10.1063/1.4893609
    [22] NI ZH Y, MA L L, DU S CH, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 2017, 11(10): 9854-9862. doi: 10.1021/acsnano.7b03569
    [23] ZENG L H, WU D, LIN SH H, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications[J]. Advanced Functional Materials, 2019, 29(1): 1806878. doi: 10.1002/adfm.201806878
    [24] MEIRZADEH E, CHRISTENSEN D V, MAKAGON E, et al. Surface pyroelectricity in cubic SrTiO3[J]. Advanced Materials, 2019, 31(44): 1904733. doi: 10.1002/adma.201904733
  • 加载中
图(3)
计量
  • 文章访问数:  1983
  • HTML全文浏览量:  425
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2020-09-14
  • 网络出版日期:  2020-12-07
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回