Application of polarization detection technology under the background of sun flare on sea surface
-
摘要: 为了实时抑制太阳耀光对海面目标探测的影响,基于偏振光学理论,设计并构建了一套偏振自适应滤波探测系统。本文介绍了偏振探测系统的功能和组成、偏振探测及背景抑制原理,并给出了该系统的光学设计结果;利用自适应偏振滤波探测系统,通过搭载望远镜跟踪试验平台,针对海上典型目标,开展了相关的偏振验证实验。实验结果表明:海面太阳耀光存在比较明显的偏振特性,采用常规探测手段,探测器极易出现饱和,而利用偏振探测技术则能够有效抑制太阳耀光的影响,进而实现目标的有效探测。Abstract: In order to suppress the influence of sun flare on the detection of sea surface targets in real time, a set of polarization adaptive filtering detection system is designed and constructed based on the polarization optical theory. In this paper, the function and composition of the polarization detection system, the principle of polarization detection and background suppression are introduced, then the optical design results of the system are given. By using the adaptive polarization filter detection system and carrying the telescope tracking test platform, relevant polarization verification experiments are carried out for the typical target at sea. The experimental results show that due to there is a significant polarization characteristic of the sun flare on the sea surface, the detector can easily get saturated with the conventional detection method. However, the proposed polarization detection technique can effectively suppress the influence of the solar flare and detect the target.
-
Key words:
- polarization detection /
- solar glare /
- sea target /
- telescope /
- background suppression
-
表 1 数据分析结果
Table 1. Data analysis results
观测区域 目标灰度 背景灰度 对比度 非耀光区 1 174 1 760 0.667 耀光区(非偏) 1 635 4 136 0.395 耀光区(偏振) 807 1 428 0.565 -
[1] LYNCH D K, DEARBORN D S P, LOCK J A. Glitter and glints on water[J]. Appl. Optics, 2011, 50(28):39-49. doi: 10.1364/AO.50.000F39 [2] KAY S, HEDLEY J D, LAVENDER S. Sun glint correction of high and low spatial resolution images of aquatic scenes:a review of methods for visible and near-infrared wavelengths[J]. Remote Sensing, 2009, 1(4):697-730. doi: 10.3390/rs1040697 [3] GARABA S P, ZIELINSKI O. Methods in reducing surface reflected glint for shipborne above-water remote sensing[J]. J. Europ. Opt. Soc. Rap. Public, 2013, 8:13058. doi: 10.2971/jeos.2013.13058 [4] TONIZZO A, HARMEL T, IBRAHIM A, et al.. Sensitivity of the above water polarized reflectance to the water composition[J]. Proc. of SPIE, 2010, 7825:78250F. doi: 10.1117/12.865510 [5] ALESSANDRO ROSSI, ALDO RICCOBONO, STEFANO LANDINI. Sun-glint false alarm mitigation in a maritime scenario[J]. Proc. of SPIE, 2014, 9250:92500X. doi: 10.1117/12.2067325 [6] 李岩, 张伟杰, 陈嘉玉.偏振场景目标探测的建模与仿真[J].光学精密工程, 2017, 25(8):2233-2243. http://www.eope.net/gxjmgc/CN/abstract/abstract17164.shtmlLI Y, ZHAGN W J, CHEN J Y. Modeling and simulation for target detection in polarization scene[J]. Opt. Precision Eng., 2017, 25(8):2233-2243.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract17164.shtml [7] 李克武, 王黎明, 王志斌, 等.弹光和电光级联的组合相位调制型椭偏测量术[J].光学精密工程, 2016, 24(4):690-697. http://www.opticsjournal.net/Articles/abstract?aid=OJ160606000467dJgMjPLI K W, WAGN L M, WANG ZH B, et al.. Phase-modulated ellipsometry combined photo-elastic modulation with electro-optic modulation[J]. Opt. Precision Eng., 2016, 24(4):690-697.(in Chinese) http://www.opticsjournal.net/Articles/abstract?aid=OJ160606000467dJgMjP [8] 陈慧敏, 刘新阳.收发同轴脉冲激光引信在水雾中的后向散射偏振特性[J].光学精密工程, 2015, 23(3):626-631. http://www.opticsjournal.net/Abstract.htm?id=OJ150420000259IeKhNkCHEN H M, LIU X Y. Backscattering polarization characteristics of pulsed laser fuze with coaxial optical system in water fog[J]. Opt. Precision Eng., 2015, 23(3):626-631.(in Chinese) http://www.opticsjournal.net/Abstract.htm?id=OJ150420000259IeKhNk [9] 林涛, 赵尚弘, 朱子行, 等.基于偏振调制的四倍频相位编码信号产生[J].光学与光电技术, 2017, 15(4):33-37. http://www.cqvip.com/QK/87090X/201204/42737245.htmlLIN T, ZHAO SH H, ZHU Z H, et al.. Frequency quadrupling phase-coded signal generation based on polarization modulation[J]. Optics & Optoelectronic Technology, 2017, 15(4):33-37.(in Chinese) http://www.cqvip.com/QK/87090X/201204/42737245.html [10] 李淑军, 姜会林, 朱京平, 等.偏振成像探测技术发展现状及关键技术[J].中国光学, 2013, 6(6):803-809. http://www.chineseoptics.net.cn/CN/abstract/abstract9069.shtmlLI SH J, JIANG H L, ZHU J P. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6):803-809.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9069.shtml [11] ZHOU G H, XU W J, NIU CH Y, et al.. The polarization patterns of skylight reflected off wave water surface[J]. Opt. Exp., 2013, 21(26):32549-32565. doi: 10.1364/OE.21.032549 [12] CHUNMIN Z, BAOCHANG Z, BIN X. Wide-field-of-view polarization interference imaging spectrometer[J]. Appl. Optics, 2004, 43(33):6090-6094. doi: 10.1364/AO.43.006090 [13] COX C, MUNK W H. Slopes of the sea surface deduced from photographs of sun glitter[J]. Scripps Inst. Oceanogr. Bull., 1956, 6:401-487. https://escholarship.org/uc/item/1p202179 [14] JOSé LUIS POOM-MEDINA, JOSUé áLVAREZ-BORREGO, BEATRIZ MARTíN-ATIENZA, et al.. Theoretical statistical relationships between the intensities of an image of the sea surface and its slopes:a result comparison of rect and Gaussian glitter functions[J]. Optical Engineering, 2014, 53:043103. doi: 10.1117/1.OE.53.4.043103