留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离子体激元的若干新应用

雷建国 刘天航 林景全 高勋 厉宝增

雷建国, 刘天航, 林景全, 高勋, 厉宝增. 表面等离子体激元的若干新应用[J]. 中国光学, 2010, 3(5): 432-439.
引用本文: 雷建国, 刘天航, 林景全, 高勋, 厉宝增. 表面等离子体激元的若干新应用[J]. 中国光学, 2010, 3(5): 432-439.
LEI Jian-guo, LIU Tian-hang, LIN Jing-quan, GAO Xun, LI Bao-zeng. New applications of surface plasmon polaritons[J]. Chinese Optics, 2010, 3(5): 432-439.
Citation: LEI Jian-guo, LIU Tian-hang, LIN Jing-quan, GAO Xun, LI Bao-zeng. New applications of surface plasmon polaritons[J]. Chinese Optics, 2010, 3(5): 432-439.

表面等离子体激元的若干新应用

基金项目: 

国家自然科学基金资助项目(No.60978014)

详细信息
    作者简介:

    雷建国(1979—),男,讲师,博士研究生,主要从事飞秒激光、表面等离子体等相关领域的研究。 E-mail:lei303@163.com

  • 中图分类号: O431.1; O439

New applications of surface plasmon polaritons

  • 摘要: 表面等离子体激元(SPPs)是在金属和介质界面传播的一种波动模式。本文首先叙述了SPPs的相关特性和激发方式,给出了一种基于表面等离子体激元共振(SPR)场增强原理产生相干极紫外辐射的方法,利用该方法可极大地提高光源的光子流量。分析了SPPs在生物及医疗领域的新应用,并对其在治疗癌症方面的技术原理进行了讨论。介绍了SPPs在新型光源和能源领域的发展和应用情况,综述了SPPs在太阳能电池、光子芯片以及集成电路方面的新工艺和新技术,包括最近几年来所取得的一些重要成果。最后讨论了SPPs在光存储方面的快速发展和巨大贡献。
  • [1] RAETHER H. Surface Plasmons. Springer Tracts in Modern Physics[M]. Berlin:Springer,1988. [2] FAINMAN Y,TETZ K,ROKITISKI R,et al.. Surface plasmonic fields in nanophotonics[J]. Opt. Photonics News,2006,17(7):24-29. [3] KIK P G,BRONGERSMA M L. Surface Plasmon Nanophotonics[M]. Berlin:Springer,2007. [4] SAMBLES J R,BRADBERY G W,YANG F Z. Optical-excitation of surface-plasmons:an introduction[J]. Contemp. Phys.,1991,32(3):173-183. [5] ZAYATS A V,SMOLYANINOV I I. Near-field photonics:surface plasmon polaritons and localized surface plasmons[J]. J. Opt. A,2003,5:S16-S50. [6] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830. [7] STOCKMAN M I,KLING M,KLEINEBERG U,et al.. Attosecond nanoplasmonic-field microscope[J]. Nature Photonics,2007,1:539-543. [8] KIM S,JIN J,KIM Y,et al.. High harmonic generation by resonant plasmon field enhancement[J]. Nature,2008,453:757-760. [9] HU W Q,LIANG E J,DING P,et al.. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial[J]. Opt. Express,2009,17(24):21843-21849. [10] LIU G L,LU Y,KIM J,et al.. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect[J]. Nano Lett.,2005,5(1):119-124. [11] KNEIPP K,WANG Y,KNEIPP H,et al.. Single molecule detection using surface-enhanced Raman scattering(SERS)[J]. Phys. Rev. Lett.,1997,78(9):1667-1670. [12] LIEBERG B,NYLANDER C,LUNDSTRM I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators,1983,4:299-304. [13] WILSON W D. Analyzing biomolecular interactions[J]. Science,2002,295(5562):2103-2105. [14] LEE J L. Better living through plasmonics[J]. Science,2009,176#10:26. [15] ATWATER H A. The promise of plasmonics[J]. Scientific American Magazine, 2007:56-63. [16] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J]. Science,2006,311:189-193. [17] OKAMOTO K,NIKI I,et al.. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy[J]. Appl. Phys. Lett.,2005,87:071102. [18] KOLLER D M,HOHENAU A,et al.. Organic plasmon-emitting diode[J]. Nature Photon,2008,2:684-687. [19] WALTERS R J,van LOON R V A,BRUNETS I,et al.. A silicon-based electrical source of surface plasmon polaritons[J]. Nature Materials,2009,9:21-25 [20] ANDREW P,BARNES W L. Energy transfer across a metal film mediated by surface plasmon polaritons[J]. Science,2004,306:1002-1005. [21] HEIDEL T D,MAPEL J K,CELEBI K,et al.. Surface plasmon polariton mediated energy transfer in organic photovoltaic devices[J]. Appl. Phys. Lett.,2007,91:093506/1-093506/3. [22] CATCHPOLE K R,POLMAN A. Plasmonic solar cells[J]. Optics Express,2008,16(26):21793-21800. [23] ATWATER H A,POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nature Materials,2010,9:205-213. [24] ZIA R,SCHULLER J A,CHANDRAN A,et al.. Plasmonics:the next chip-scale technology[J]. Materials Today,2006,9(7-8):20-27. [25] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830. [26] STEFAN A M,HARRY A A. Plasmonics:localization and guiding of electromagnetic energy in metal/dielectric structures[J]. J. Appl. Phys.,2005,98:011101-011110. [27] NOGINOV M A,ZHU G,BELGRAVE A M,et al.. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460:1110-1112. [28] HECHT B,BIELEFELDT H,NOVOTNY L,et al.. Local excitation, scattering, and interference of surface plasmons[J]. Phys. Rev. Lett.,1996,77(9):1889-1892. [29] PENDRY J. Enhanced:playing tricks with light[J]. Science,1999,285:1687-1688. [30] OULTON R F,SORGER V J,ZENTGRAF T,et al.. Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461:629-632. [31] BOZHEVOLNYI S I,VOLKOV V S,DEVAUX W,et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature,2006,440:508-511. [32] AKIMOV A V,MUKHERJEE A,YU C L,et al.. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature,2007,450:402-406. [33] ZIJLSTRA P,CHON J W M,GU M,et al.. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature,2009,459:410-413. [34] MANSURIPUR M,ZAKHARIAN A R,LESUFFLEUR A,et al.. Plasmonic nano-structures for optical data storage[J]. Opt. Express,2009,17(16):14001-14014. [35] KIK P G,MAIER S A,ATWATER H A,et al.. Image resolution of surface plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources[J]. Phys. Rev. B,2004,69(4):045418-045422.
  • [1] 宗楠, 胡蔚敏, 王志敏, 王小军, 张申金, 薄勇, 彭钦军, 许祖彦.  激光等离子体13.5 nm极紫外光刻光源进展 . 中国光学, 2020, 13(1): 28-42. doi: 10.3788/CO.20201301.0028
    [2] 马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添.  金属等离子激元调控Fabry-Perot微腔谐振模式研究 . 中国光学, 2019, 12(3): 649-662. doi: 10.3788/CO.20191203.0649
    [3] 任升, 刘丽炜, 李金华, 胡思怡, 任玉, 王玥, 修景锐.  纳米尺度下的局域场增强研究进展 . 中国光学, 2018, 11(1): 31-46. doi: 10.3788/CO.20181101.0031
    [4] 朱业传, 苑伟政, 虞益挺.  表面等离子体平面金属透镜及其应用 . 中国光学, 2017, 10(2): 149-163. doi: 10.3788/CO.20171002.0149
    [5] 李欣远, 纪穆为, 王虹智, 涂国鹏, 万晓冬, 刘佳佳, 刘佳, 徐萌, 张加涛.  近红外光热转换纳米晶研究进展 . 中国光学, 2017, 10(5): 541-554. doi: 10.3788/CO.20171005.0541
    [6] 王五松, 张利伟, 张冶文.  表面等离子波导及应用 . 中国光学, 2015, 8(3): 329-339. doi: 10.3788/CO.20150803.0329
    [7] 蔡浩原.  高分辨率表面等离子体显微镜综述 . 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
    [8] 苏彦勋, 柯沅锋, 蔡士良, 姚芊瑜, 徐嘉妘, 龚柏谚.  层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池 . 中国光学, 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267
    [9] 管小伟, 吴昊, 戴道锌.  硅基混合表面等离子体纳米光波导及集成器件 . 中国光学, 2014, 7(2): 181-195.
    [10] 窦银萍, 孙长凯, 林景全.  激光等离子体极紫外光刻光源 . 中国光学, 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020
    [11] 王二伟, 鱼卫星, 王成, 卢振武.  用表面等离子体共振传感器检测纳米间距 . 中国光学, 2013, 6(2): 259-266. doi: 10.3788/CO.20130602.0259
    [12] 张琨, 岳远斌, 李彤, 孙小强, 张大明.  感应耦合等离子体刻蚀在聚合物光波导制作中的应用 . 中国光学, 2012, 5(1): 64-70. doi: 10.3788/CO.20120501.0064
    [13] 任玉, 李付锦, 董旭, 林景全.  飞秒激光等离子体通道传导能量特性的研究进展 . 中国光学, 2012, 5(2): 133-142. doi: 10.3788/CO.20120502.0133
    [14] 陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙.  表面等离子体激元纳米激光器技术及应用研究进展 . 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
    [15] BELEVTSEV A A, FIRSOV K N, KAZANTSEV S Yu, KONONOV I G, 张来明.  非链式化学HF(DF)激光器工作气体中电子分离的非稳定性和气体放电等离子体的自组织现象 . 中国光学, 2011, 4(1): 31-40.
    [16] 叶继飞, 洪延姬, 王广宇, 李南雷.  激光等离子体微推进技术的研究进展 . 中国光学, 2011, 4(4): 319-326.
    [17] 刘镜, 刘娟, 王涌天, 谢敬辉.  亚波长金属光栅的表面等离子体激元共振特性 . 中国光学, 2011, 4(4): 363-368.
    [18] MA Jun-xian, FANG Yu, CHEN Bi-bo, TAN Rui-hu, LUO Xian-gang.  T型缝隙结构表面等离子波导的基本特性研究 . 中国光学, 2010, 3(1): 89-92.
    [19] YANG T, HO H P.  基于银膜孔阵列超强透射效应的相敏表面等离子体共振传感器的仿真研究 . 中国光学, 2010, 3(1): 57-63.
    [20] LIU Juan, WANG Yong-tian, XU Li-wei, XIE Jing-hui.  表面等离子体波在金属纳米缝超强透射中的作用 . 中国光学, 2010, 3(1): 33-37.
  • 加载中
计量
  • 文章访问数:  6071
  • HTML全文浏览量:  204
  • PDF下载量:  8129
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-17
  • 修回日期:  2010-07-23
  • 刊出日期:  2010-10-25

表面等离子体激元的若干新应用

    基金项目:

    国家自然科学基金资助项目(No.60978014)

    作者简介:

    雷建国(1979—),男,讲师,博士研究生,主要从事飞秒激光、表面等离子体等相关领域的研究。 E-mail:lei303@163.com

  • 中图分类号: O431.1; O439

摘要: 表面等离子体激元(SPPs)是在金属和介质界面传播的一种波动模式。本文首先叙述了SPPs的相关特性和激发方式,给出了一种基于表面等离子体激元共振(SPR)场增强原理产生相干极紫外辐射的方法,利用该方法可极大地提高光源的光子流量。分析了SPPs在生物及医疗领域的新应用,并对其在治疗癌症方面的技术原理进行了讨论。介绍了SPPs在新型光源和能源领域的发展和应用情况,综述了SPPs在太阳能电池、光子芯片以及集成电路方面的新工艺和新技术,包括最近几年来所取得的一些重要成果。最后讨论了SPPs在光存储方面的快速发展和巨大贡献。

English Abstract

雷建国, 刘天航, 林景全, 高勋, 厉宝增. 表面等离子体激元的若干新应用[J]. 中国光学, 2010, 3(5): 432-439.
引用本文: 雷建国, 刘天航, 林景全, 高勋, 厉宝增. 表面等离子体激元的若干新应用[J]. 中国光学, 2010, 3(5): 432-439.
LEI Jian-guo, LIU Tian-hang, LIN Jing-quan, GAO Xun, LI Bao-zeng. New applications of surface plasmon polaritons[J]. Chinese Optics, 2010, 3(5): 432-439.
Citation: LEI Jian-guo, LIU Tian-hang, LIN Jing-quan, GAO Xun, LI Bao-zeng. New applications of surface plasmon polaritons[J]. Chinese Optics, 2010, 3(5): 432-439.
参考文献 (1)

目录

    /

    返回文章
    返回