[1] BRUGGER K. Exact solutions for the temperature rise in a laser-heated slab[J]. J. Appl. Phys.,1972,43(2):577-583.
[2] SPARKS M. Theory of laser heating of solid:metals[J]. J. Appl. Phys.,1976,47(3): 837-849.
[3] WARREN R E,SPARKS M. Laser heating of a slab having temperature-dependent surface absorptance[J]. J. Appl. Phys.,1979,50(12):7952-7957.
[4] LOZE M K,WRIGHT C D. Temperature distributions in semi-infinite and finite-thickness media as a result of absorption of laser light[J]. Appl. Opt.,1997,36(2):494-507.
[5] LOZE M K,WRIGHT C D. Temperature distributions in laser-heated semi-infinite and finite-thickness media with convective surface losses[J]. Appl. Opt.,1998,37(28):6822-6832.
[6] CRANE K C A,GARNSWORTHY R K,MATHIAS L E S. Ablation of materials subjected to laser radiation and high-speed gas flows[J]. J. Appl. Phys.,1980,51(11):5954-5961.
[7] JOHNSON R L,O'KEEFE J D. Laser burn-through time reduction due to tangential airflow-an interpolation formula[J]. AIAA J.,1973,12(8):1106-1109.
[8] BOLEY C D,RUBENCHIK A M. Modeling of material removal by solid state heat capacity lasers . UCRL-JC-146480,April 2002.
[9] BOLEY C D,RUBENCHIK A M. Modeling of high-energy pulsed laser interactions with coupons . UCRL-ID-151857,February 2003.
[10] BOLEY C D,FOCHS S N,RUBENCHIK A M. Lethality effects of a high-power solid-state laser . UCRL-CONF-229010,March 2007.
[11] YAMAMOTO R,PARKER J,BOLEY C,et al.. Laser-material interaction studies utilizing the solid-state heat capacity laser . UCRL-CONF-230816,May 2007.
[12] BOLEY C D,RUBENCHIK A M. Modeling of laser-induced metal combustion . UCRL-CONF-401854,February 2008.
[13] BOLEY C D,FOCHS S N,RUBENCHIK A M. Large-spot material interactions with a high-power solid-state laser beam . UCRL-JRNL-406723,August 2008.
[14] BOLEY C D,CUTTER K P,FOCHS S N,et al.. Study of laser interaction with thin targets . LLNL-PROC-411215,March 2009.
[15] BOLEY C D,CUTTER K P,FOCHS S N,et al.. Interaction of a high-power laser beam with metal sheets[J]. J. Appl. Phys.,2010,107:0431061-0431065.
[16] CHAN C L,MAZUMDER J. One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction[J]. J. Appl. Phys.,1987,62(11):4579-4586.
[17] CHAN C L,MAZUMDER J,CHEN M M. Effect of surface tension gradient driven convection in a laser melt pool:three-dimensional perturbation model[J]. J. Appl. Phys.,1988,64(11):6166-6174.
[18] FAROOQ K,KAR A. Removal of laser-melted material with an assist gas[J]. J. Appl. Phys.,1998,83(12):7467-7473.
[19] TOKAREV V N,KAPLAN A F H. An analytical modeling of time dependent pulsed laser melting[J]. J. Appl. Phys.,1999,86(5):2836-2846.
[20] TOSTO S. Modeling and computer simulation of pulsed-laser-induced ablation[J]. Appl. Phys. A,1999,68:439-443.
[21] SOLANA P,KAPADIA P,DOWDEN J,et al.. Time dependent ablation and liquid ejection processes during the laser drilling of metals[J]. Opt. Communications,2001,191:97-112.
[22] ABDERRAZAK K,KRIAA W,SALEM W B,et al.. Numerical and experimental studies of molten pool formation during an interaction of a pulse laser(Nd:YAG) with a magnesium alloy[J]. Opt. & Laser Technol.,2009,41:470-480.
|