Evaluation of independent innovation capability of institutes based on hawk-dove quantum games
-
摘要: 科研院所的科技自主创新能力是推动国家科技进步和经济发展,应对国际经济危机的主要动力,创建科学、完善的科技创新能力评价方法有助于提升科研院所科技创新能力,并为国家制定科技创新决策提供参考依据。本文基于鹰鸽量子博弈理论,提出了一种评价科研院所自主创新能力的方法。介绍了量子博弈论的各基本要素在科技自主创新体系中所对应的物理内涵,根据鹰鸽量子博弈理论建立了科技自主创新能力评价模型,分析了纠缠度与收益矩阵之间的关系,确立了依靠各参与者在鹰鸽量子博弈中的纠缠度来表征科技自主创新能力的方法。给出了科研院所科技自主创新能力的量子博弈论解释,构建了科技自主创新能力评价指标体系,并确定了评价的合成计算方法,即量子纠缠度的计算方法。最后,以中科院部分研究所为实例进行了科技自主创新能力的评价,并利用主成份分析法和中物院的简单统计方法对得到的数据进行了对比分析,结果证明了提出的方法合理且有可操作性。Abstract: Innovation capability is the major driving force for the technology and economic development of a country. Establishment of a scientific evaluation method for innovation capability can be helpful to enhance such a capability for those institutes in a country and can provide references for government to make policies in science and technology development. In this paper, a new evaluation method is created based on the hawk-dove game theory. Corresponding to basic factors of quantum game theory, the physical meanings in an innovation system are introduced and a evaluation model of technology innovation capability is established based on the hawk-dove game theory. Then, the relation between entanglement and benefits matrix is analyzed and a method is established in which the entanglement from various participants in hawk-dove quantum game theory is used to indicate innovation capability. Furthermore, the capacity of independent innovation of research institutes is explained with hawk-dove quantum game theory, an index system for independent innovation capability is constructed and a combinational calculation method, namely, the calculation of quantum entanglement, is also set up. Finally, institutes of Chinese Academy of Sciences are chosen as the evaluation examples and evaluation data from this method and the simple statistical method of China Academy of Engineering Physics are compared. The result shows that this new method is rational and operable.
-
Key words:
- quantum game /
- independent innovation capacity /
- entanglement
-
[1] AXELROD R. The Complexity of Cooperation:Agent-based Models of Conflict and Cooperation[M]. Princeton:Princeton University Press,1997. [2] BENJAMIN S C,HAYDEN P M. Multi-player quantum games[J]. Phys. Rev. A,2001,64(3):030301. [3] DOPFER K. Evolutionary Economics:Program and Scope[M]. Boston:Kluwer Academic Publishers,2001. [4] DOSI G,NELSON R R. An introduction to evolutionary theories in economics[J]. J. Evolutionary Economics,1994(4):153-172. [5] SQW. Economic analysis of scientific research publishing[R]. Cambridgeshire:Wellcome Trust,2003. [6] HODGSON G M. Economics and Evolution:Bringing Life Back into Economics[M]. Ann Arbor:University of Michigan Press,1993. [7] KNIELSEN K,JOHNSON B. Institutions and Economic Change[M]. Cheltenham:Edward Elgar Publishing Limited,1998. [8] FRIEDMAN D. On economic applications of evolutionary game theory[J]. J. Evolutionary Economics,1998(8):15-43. [9] GUEVARA E. Quantum replicator dynamics[J]. Physica A,2006,369(2):393-407. [10] GUEVARA E. Quantum games and the relationships between quantum mechanics and game theory[EB/OL].(2008-05-12)[2011-03-11].http://www.citeulike.org/user/Scis0000002/article/4890869. [11] IQBAL A,TOOR A H. Equilibria of replicator dynamics in quantum games[EB/OL].(2001-01-09)[2011-03-11].http://arxiv.org/abs/quant-ph/0106135. [12] GOLDENBERG L,VAIDMAN L,WEISNER S. Quantum gambling[J]. Phys. Rev. Lett.,1999,82(16):3356-3359. [13] MEYER D A. Quantum strategies[J]. Phys. Rev. Lett.,1999,82(5):1052-1055. [14] NAWAZ A,TOOR A H. Evolutionarily stable strategies in quantum hawk-dove game[J]. Phys. Lett. A,2001,280(5-6):249-256. [15] EISERT J,WILKENS M,LEWENSTEIN M. Quantum games and quantum strategies[J]. Phys. Rev. Lett.,83(15):3077-3080. [16] MARINATTO L,WEBER T. A quantum approach to static games of complete information[J]. Phys. Lett. A.,2000,272(5-6):291-303. [17] PIOTROWSKI E W,SLADKOWSKI J. Quantum market games[J]. Physica A,2002,312(1-2):208-217. [18] SALLY D. On sympathy and games[J]. J. Economic Behavior and Organization,2001,44(1):1-30. [19] SMITH J M. Evolution and the Theory of Games[M]. Cambridge:Cambridge University Press,1982. [20] SMITH J M. Evolutionary game theory[J]. Physica D,1986,22:43-49. [21] ZHA X W. Entanglement of quantum pure states[J]. J. Xi'an University Post and Telecommunications,2003,8(1):56-58.
计量
- 文章访问数: 3429
- HTML全文浏览量: 543
- PDF下载量: 1014
- 被引次数: 0