[1] EBBESEN T W,LEZEC H J,GHAEMI H F,et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature,1998,391:667-669.
[2] 顾本源 . 表面等离子体亚波长光学原理和新颖效应[J]. 评述 ,2007,36(4):280-285. GU B Y. Surface plasmon subwavelength optics: principles and novel effects[J]. Comments,2007,36(4):280-285.(in Chinese)
[3] GARCIA-VIDAL F J,LEZEC H J,EBBESEN T W,et al. Multiple paths to enhance optical transmission through a single subwavelength slit[J]. Phys. Rev. Lett.,2003,90(21):213901-1-213901-3.
[4] PORTO J A,GARCIA-VIDAL F J,PENDRY J B. Transmission resonances on metallic gratings with very narrow slits[J]. Phys. Rev. Lett.,1999,83(14):2845-2848.
[5] YANG J,YANG C C,KIANG Y W. Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assited boundary integral equation method[J]. Opt. Express,2007,15(14):9048-9055.
[6] LIU J,XIE J H,WANG Y T. Transmission and diffraction through metallic nanoslit[J]. Modern Phys. Lett. B,2008,22(29):2821-2829.
[7] LIU J,XIE J H,WANG Y T. Transmission and diffraction through metallic nanoslit[J]. Modern Phys. Lett. B,2008,22(29):2821-2829.
[8] DI S,LIU J. Transmitted behavior of the light waves through horn-opened single nanoslit in finite width metallic films[J]. J. Opt. Soc. Am. B,2007,24(9):2349-2356.
[9] WANG SH Q,LIU J. Rigorous electromagnetic analysis of the common focusing characteristics of cylindrical microlens with long focal depth by multi-wavelength incidence[J]. J. Opt. Soc. Am. A,2007,24(2):512-516.
[10] CHEN K M. A mathematical formulation of the equivalence principle[J]. IEEE T. Microw Theory,1989,37(10):1576-1580.
[11] HU B,LIU J. Enhanced effect of local-fields in subwavelength metallic series nano-cavities from surface plasmon polaritons[J]. J. Opt. Soc. Am. A,2007,24(10):A1-A6.
[12] LIU J,HU B. Analysis of surface plasmons excitations from fabrication defects of metallicnanofilm with nonsymmetrical and finite grating-like corrugation[J]. Modern Phys. Lett. B,2007,21(25):1677-1685.
[13] PALIK E W. Handbook of Optical Constants of Solids[M]. San Diego:Academic Press,1985.
[14] 谈春雷,易永祥,汪国平. 一维金属光栅的透射光学特性[J]. 物理学报 ,2002,51(5):1063-1066. TAN CH L,YI Y X,WANG G P. Optical transmission prorerties of one-dimensional metallic gratings[J]. Acta Physic Sinica,1997,2002,51(5):1063-1066.(in Chinese)
[15] ASTILEAN S,LALANNE Ph,PALAMARU M. Light transmission through metallic channels much smaller than the wavelength[J]. Opt. Communication,2000,175(4-6): 265-273.
[16] LIU P,LIU J,LIU J,et al.. Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave[J]. Opt. Communications,2011,284(4):1076-1081.
[17] LIU J,WANG Y T,SUN F,et al.. Optical transmission through metallic nanoslit with symmetric or asymmetric surface-relief profile[J]. Optik,2011,122(9):782-786.
[18] 何启浩,汪国平. 一维金属光栅的透射光增强效应的物理机制[J]. 激光杂志 ,2003,24(4):29-30. HE Q H,WANG G P. Phyxical mechanism for transmission echancement of one-dimensional metallic gratings[J]. Laser J.,2003,24(4):29-30.(in Chinese)
[19] 白文理,郭宝山,蔡利康,等. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究[J]. 物理学报 ,2009,58(11): 8021-8024. BAI W L,GUO B S,CAI L K,et al.. Simulation of light coupling enhancement and localization of transmission field via sub-wavelength metallic gratings[J]. Acta Physica Sinica,2009,58(11):8021-8024.(in Chinese)
[20] 张剑龙,黄铭,胡宝晶. 亚波长孔阵透射增强特性的FDTD数值仿真[J]. 云南大学学报 ,2008,30(5):472-476. ZHANG X L,HUANG M,HU B J. Simulation on light extraction efficiency of subwavelength hole array with FDTD method[J]. J. Yunan Unversity,2008,30(5):472-476.(in Chinese)
[21] 王亚伟,刘明礼,刘仁杰,等. Fabry-Perot谐振腔对横电波激励下亚波长一维金属光栅的异常透射特性的作用[J]. 物理学报 ,2011,60(2):024217-1-024217-5. WANG Y W,LIU M L,LIU R J,et al.. Fabry-Perot resonance on extraordinary transmission through one-dimensional metallic gratings with sub-wavelength under transverse electric wave excitation[J]. Acta Phys. Sin.,2011,60(2):024217-1-024217-5.(in Chinese)
[22] LINDBERG J,LINDFORS K,SETALA T,et al.. Spetral analysis of resonant transmission of light through a single sub-wavelength slit[J]. Op. Express,2004,12(4):623-626.
|