留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温室气体遥感探测仪器发展现状

郑玉权

郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学, 2011, 4(6): 546-561.
引用本文: 郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学, 2011, 4(6): 546-561.
ZHENG Yu-quan. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics, 2011, 4(6): 546-561.
Citation: ZHENG Yu-quan. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics, 2011, 4(6): 546-561.

温室气体遥感探测仪器发展现状

基金项目: 

国家863高技术研究发展计划资助项目(No.2010AA1221091001)

详细信息
    作者简介:

    郑玉权(1972-),男,内蒙古通辽人,博士,研究员,主要从事航空航天高光谱成像技术、光学系统设计、光谱辐射定标等方面的研究。E-mail: zhengyq@sklao.ac.cn

  • 中图分类号: TP722.3; X87

Development status of remote sensing instruments for greenhouse gases

  • 摘要: 阐述了温室气体遥感探测技术的发展历程。详细介绍了几种国外先进的高光谱分辨率温室气体遥感探测仪器的设计理念、工作方式、谱段设置和主要技术指标。综述了温室气体探测技术从综合性探测仪器到专用温室气体探测仪器的发展过程,指出了温室气体探测仪器未来发展方向,包括高光谱分辨率、高空间分辨率,宽覆盖范围,短覆盖周期以及高信噪比等。
  • [1] 刘毅,吕达仁,陈洪斌,等 . 卫星遥感大气CO2的技术与方法进展综述[J]. 遥感技术与应用 ,2011,26(2):247-254. LIU Y,LV D R,CHEN H B,et al.. Advances in technologies and methods for satellite remote sensing of atmospheric CO2[J]. Remote Sensing Technology and Appl.,2011,26(2):247-254.(in Chinese). [2] KING J I F. Scientific Use of Earth Satellites[M]. Ann Arbor Michigam:Ann Arbor University of Michigan Press,1956:133-136. [3] GKAPLAN L D. Inference of atmospheric structure from remote radiation measurement[J]. J. Opt. Soc. Am.,1959,49(10):1004-1007. [4] SMITH W L,WOOLF H M,HAYDEN C M,et al.. The TIROS-N operational vertical sounder[J]. Bull. American Meteorological Society,1979,60:1177-1187. [5] PERSKY M J. A review of spaceborne infrared Fourier transform spectrometers for remote sensing[J]. Rev. Sci, Instrum.,1995(66):4763-4797. [6] KOBAYASHI H,SHIMOTA A,YOSHIGAHARA C,et al.. Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evalution[J]. IEEE T. Geosci. Remote,1999,37(3):1496-1507. [7] KOBAYASHI H,SHIMOTA A,KONDO K,et al.. Development and evaluation of the interferometric monitor for greenhouse gases: a high-throughput Fourier-transform infrared radiometer for nadir Earth observation[J]. Appl. Opt.,1999,38(33):6801-68047. [8] GILLE J C,PAN L,SMITH M W,et al.. Retrieval of carbon monoxide profiles and total methane from MOPITT measurements[J]. Geoscience and Remote Sensing Symposium,1994,2:684-686. [9] AUMANN H H,MILLER C R. The Atmospheric Infrared Sounder(AIRS) on the earth oberving system[J]. SPIE,1995,2583:332-343. [10] BOVENSMANN H,BURROWS J P,BUCHWITZ M,et al.. SCIAMACHY-Mission objectives and measurement modes[J]. J. Atmos. Sci.,1999,56(2):127-150. [11] SOUCY M-A A,CHATEAUNEUF F,DEUTSCH C. ACE-FTS instrument detailed design[J]. SPIE,2002,4814:70-81. [12] BEER R. TES on the aura mission:scientific objectives, measurements and analysis overview[J]. SPIE,2000,4004:600-611. [13] BLUMSTEIN D,CHALON G,CARLIER T. IASI instrument:technical overview and measured performances[J]. SPIE,2004,5543:196-207. [14] SHIMODA H. Overview of Japanese earth observation programs[J]. SPIE,2009,7474:74740G-1. [15] NEECK S P,VOLZ S M. NASA's earth science missions overview[J]. SPIE,2009,7474:74740B-1. [16] MICHAEL B,HEINRICH B,MAXIMILIAN R,et al.. Passive satellite remote sensing of carbon dioxide and methane:SCIAMACHY, GOSAT, CarbonSat[J]. Geophys Res Abstracts,2011,13:6556. [17] MAGER R,FRICKE W,BURROWS J P. SCIAMACHY a new-generation of hyperspectral remote sensing instrument[J]. SPIE,1997,3106:84-94. [18] ZOUTMAN E,OLIJ C. Calibration approach for sciamachy[J]. SPIE,1997,3117:306-316. [19] WERIJ H,OLIJ C,ZOUTMAN A E,et al.. SCIAMACHY the completion of a new-generation instrument for studying the atmosphere[J]. SPIE,1997,2957:20-30. [20] AUMANN H H,CHAHINE M T,CAUTIER,et al.. AIRS/AMSU/HSB on the Aqua mission:design, science objectives, data products, and processing systems[J]. IEEE T. Geosci. Remote,2003,41(2):253-264. [21] MORSE P,BATES J,MILLER C. Development and test of the atmospheric infrared sounder(AIRS). infrared spaceborne remote sensing[J]. SPIE,1999,3759:236-253. [22] ILLER C R. Status of the Atmospheric Infrared Sounder(AIRS)[J]. SPIE,1996,2961:73-90. [23] BROBERG S E,PROBERG T S,AUMANN H H. Atmospheric sounding at JPL:current and future technologies. infrared technology and application[J]. SPIE,2003,5074:600-611. [24] BLUMSTEIN D,TLUMSTEIN B,CAYLA F R. In-flight performance of the infrared atmospheric sounding interferometer(IASI) on METOP-A[J]. SPIE,2007,6684:66840H-1. [25] SIMEONI D,ASTRUC P,MIRAS D,et al.. Design and development of IASI instrument[J]. SPIE,2004,5543:208-219. [26] KUZE A,URABE T,SUTO H,et al.. The instrument and the BBM test results of thermal and near infrared sensor for carbon observation(TANSO) on GOSAT. Infrared Spaceborne Remote Sensing[J]. SPIE,2006,6297:62970K-1. [27] HAMAZAKI T. Greenhouse gases observation from space-overview of TANSO and GOSAT //Proc. of the 7th ICSO(Interenational Conference on Space Optics),Oct 14-17,2008,Toulouse,France,2008. [28] Thermal and near infrared sensor for carbon observation(TANSO) on board the greenhouse gases observing SATellite(GOSAT) research announcement appendix A,outlines of GOSAT and TANSO sensor .(2010-08-09) http://www.gosat.nies.go.ip/eng/proposal/download/GOSAT_RA_A.en.pdf. [29] THOMAS R L,DAVID C. The NASA orbiting carbon observatory(OCO) mission:objectives, approach and status //Pasadena,CA:Jet Propultion Laboratory,National Aeronautic and Space Administration,2008:1-5. [30] CRISP D,MILLER C E,DECOLA P L. NASA orbiting carbon observatory:measuring the column averaged carbon dioxide mole fraction from space[J]. J. Appl. Remote Sensing,2008,2(1):1-14. [31] HARING R,POLLOCK R,SUTIN B. Current development status of the orbiting carbon observatory instrument optical design. Infrared Spaceborne Remote Sensing[J]. SPIE,2005:5883:58830C-1. [32] POLLOCK R,HARING R E,HOLDEN J R. The orbiting carbon observatory instrument: performance of the OCO instrument and plans for the OCO-2 instrument:sensors, systems and next-generation satellites XIV[J]. SPIE,2010,7826:78260W-1. [33] CRISP D. The orbiting carbon observatory:NASA's first dedicated carbon dioxide mission:sensors, systems, and next-generation satellites XII[J]. SPIE,2008,7106:710604-1. [34] LOVE S P. Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays[J]. SPIE,2009,7210:721007-1. [35] 吴军,王先华,方勇华,等. 空间外差光谱技术应用于大气二氧化碳探测的能力分析[J]. 光学学报 ,2011,31(1):1-7. WU J,WANG X H,FANG Y H,et al.. Ability analysis of spatial heterodyne spectrometer in atmospheric CO2 detection[J]. Acta Optica Sinica,2011,31(1):1-7.(in Chinese)
  • [1] 钟笠, 宋迪, 焦月, 李晗, 李国林, 季文海.  具有复杂光谱特征的丙烯气体的TDLAS检测技术研究 . 中国光学, 2020, 13(5): 1044-1054. doi: 10.37188/CO.2019-0203
    [2] 刘铭鑫, 张新, 王灵杰, 史广维, 吴洪波, 付强.  压缩感知光谱成像技术的编码孔径与探测器匹配优化 . 中国光学, 2020, 13(2): 290-301. doi: 10.3788/CO.20201302.0290
    [3] 张猛蛟, 蔡毅, 江峰, 钟海政, 王岭雪.  紫外增强硅基成像探测器进展 . 中国光学, 2019, 12(1): 19-37. doi: 10.3788/CO.20191201.0019
    [4] 张磊, 陈绍武, 赵海川, 王平, 武俊杰.  基于光电探测的多光谱测温装置 . 中国光学, 2019, 12(2): 289-293. doi: 10.3788/CO.20191202.0289
    [5] 孙德贝, 李志刚, 李福田.  用于太阳光谱仪的光电探测系统线性度测试装置 . 中国光学, 2019, 12(2): 294-301. doi: 10.3788/CO.20191202.0294
    [6] 邢笑雪, 王宪伟, 秦宏伍, 商微微, 马玉静.  PbSe量子点近红外光源的CH4气体检测 . 中国光学, 2018, 11(4): 662-668. doi: 10.3788/CO.20181104.0662
    [7] 兰硕, 李新南, 徐晨.  激光合束光学系统气体热效应影响分析 . 中国光学, 2018, 11(1): 108-114. doi: 10.3788/CO.20181101.0108
    [8] 梅风华, 李超, 张玉鑫.  光谱成像技术在海域目标探测中的应用 . 中国光学, 2017, 10(6): 708-718. doi: 10.3788/CO.20171006.0708
    [9] 郑成超, 蔺超, 王龙, 纪振华, 郑玉权.  CO2探测仪1610nm通道光谱仪的精细定焦 . 中国光学, 2015, 8(6): 942-950. doi: 10.3788/CO.20150806.0942
    [10] 张艳超, 赵建.  改进C-V分割算法在多光谱成像仪中的应用 . 中国光学, 2015, 8(1): 68-73. doi: 10.3788/CO.20150801.0068
    [11] HERMSDORF J?rg, KAIERLE Stefan.  光电偶效应和光束整形对激光稳定气体保护焊接的增益 . 中国光学, 2014, 7(1): 112-117. doi: 10.3788/CO.20140701.0112
    [12] 高志良.  高光谱成像仪等效焦面装调模组设计 . 中国光学, 2014, 7(4): 644-650. doi: 10.3788/CO.20140704.0644
    [13] 王洪涛, 黄云彪, 黄鸿.  激光气体分析仪中数字滤波器的设计 . 中国光学, 2013, 6(5): 729-735. doi: 10.3788/CO.20130605.0729
    [14] 张春雷, 向阳.  超光谱成像仪图像均匀性校正 . 中国光学, 2013, 6(4): 584-590. doi: 10.3788/CO.20130604.0584
    [15] 赵其昌, 杨勇, 李叶飞, 董长哲.  大气痕量气体遥感探测仪发展现状和趋势 . 中国光学, 2013, 6(2): 156-162. doi: 10.3788/CO.20130602.0156
    [16] 刘倩倩, 郑玉权.  超高分辨率光谱定标技术发展概况 . 中国光学, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
    [17] 杨宏道, 李晓红, 李国强, 袁春华, 邱荣.  不同气体环境下532 nm激光诱导硅表面形貌的研究 . 中国光学, 2011, 4(1): 86-92.
    [18] 李婧, 王蕴珊, 司书春, 徐建强, 高成勇, 周灿林.  基于数字滤波的主动式高光谱成像系统及其波长标定 . 中国光学, 2010, 3(4): 374-378.
    [19] 张益茬, 刘伟, 胡春晖.  空间超光谱成像仪前置光学系统的热光学特性 . 中国光学, 2010, 3(6): 572-579.
    [20] 汪逸群, 颜昌翔, 苗春安.  星载高分辨率超光谱成像仪分光方式的选择 . 中国光学, 2009, 2(4): 304-308.
  • 加载中
计量
  • 文章访问数:  2191
  • HTML全文浏览量:  84
  • PDF下载量:  1440
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-17
  • 修回日期:  2011-11-22
  • 刊出日期:  2011-12-25

温室气体遥感探测仪器发展现状

    基金项目:

    国家863高技术研究发展计划资助项目(No.2010AA1221091001)

    作者简介:

    郑玉权(1972-),男,内蒙古通辽人,博士,研究员,主要从事航空航天高光谱成像技术、光学系统设计、光谱辐射定标等方面的研究。E-mail: zhengyq@sklao.ac.cn

  • 中图分类号: TP722.3; X87

摘要: 阐述了温室气体遥感探测技术的发展历程。详细介绍了几种国外先进的高光谱分辨率温室气体遥感探测仪器的设计理念、工作方式、谱段设置和主要技术指标。综述了温室气体探测技术从综合性探测仪器到专用温室气体探测仪器的发展过程,指出了温室气体探测仪器未来发展方向,包括高光谱分辨率、高空间分辨率,宽覆盖范围,短覆盖周期以及高信噪比等。

English Abstract

郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学, 2011, 4(6): 546-561.
引用本文: 郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学, 2011, 4(6): 546-561.
ZHENG Yu-quan. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics, 2011, 4(6): 546-561.
Citation: ZHENG Yu-quan. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics, 2011, 4(6): 546-561.
参考文献 (1)

目录

    /

    返回文章
    返回