留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基混合表面等离子体纳米光波导及集成器件

管小伟 吴昊 戴道锌

管小伟, 吴昊, 戴道锌. 硅基混合表面等离子体纳米光波导及集成器件[J]. 中国光学, 2014, 7(2): 181-195.
引用本文: 管小伟, 吴昊, 戴道锌. 硅基混合表面等离子体纳米光波导及集成器件[J]. 中国光学, 2014, 7(2): 181-195.
GUAN Xiao-wei, WU Hao, DAI Dao-xin. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J]. Chinese Optics, 2014, 7(2): 181-195.
Citation: GUAN Xiao-wei, WU Hao, DAI Dao-xin. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J]. Chinese Optics, 2014, 7(2): 181-195.

硅基混合表面等离子体纳米光波导及集成器件

基金项目: 

国家高技术研究发展计划(863计划)资助项目(No.2011AA010301);国家自然科学基金资助项目(No.11374263);教育部博士点基金资助项目(No.20120101110094)

详细信息
    作者简介:

    管小伟(1988-),男,河南新蔡人,博士研究生,2009年于东南大学获得学士学位,主要从事硅纳米线波导和硅基混合表面等离子体纳米光波导及集成器件等方面的研究。E-mail:guanxiaowei@coer.zju.edu.cn

    通讯作者: 戴道锌,E-mail:dxdai@zju.edu.cn
  • 中图分类号: TN252;TN256

Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices

  • 摘要: 总结并展望了硅基混合表面等离子体纳米光波导及集成器件方面的理论和实验研究工作。首先介绍了几种硅基混合表面等离子体纳米光波导结构,其尺寸可小至100 nm以下,而传播长度达100 m量级;其次介绍了基于硅基混合表面等离子体纳米光波导的功分器、偏振分束器和谐振器等集成器件,其尺寸为亚微米量级;最后探讨了硅基混合表面等离子体纳米光波导与硅纳米线光波导的耦合及对其进行增益补偿。
  • [1] TSUCHIZAWA T, YAMADA K, FUKUDA H, et al.. Microphotonics devices based on silicon microfabrication technology[J]. IEEE J. Select. Top. Quant. Electron., 2005, 11(1):232-240. [2] ALMEIDA V R, XU Q, BARRIOS C A, et al.. Guiding and confining light in void nanostructure[J]. Opt. Lett., 2004, 29(11):1209-1211. [3] THYLEN L, QIU M, ANAND S. Photonic crystals-a step towards integrated circuits for photonics[J]. Chemphyschem, 2004, 5(9):1268-1283. [4] GOTO T, KATAGIRI Y, FUKUDA H, et al.. Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates[J]. Appl. Phys. Lett., 2004, 84(6):852-854. [5] CHARBONNEAU R, LAHOUD N, MATTIUSSI G, et al.. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons[J]. Opt. Express, 2005, 13(3):977-984. [6] ZIA R, SELKER M D, CATRYSSE P B, et al.. Geometries and materials for subwavelength surface plasmon modes[J]. J. Opt. Soc. Am. A., 2004, 21(12):2442-2446. [7] KUSUNOKI F, YOTSUYA T, TAKAHARA J, et al.. Propagation properties of guided waves in index-guided two-dimensional optical waveguides[J]. Appl. Phys. Lett., 2005, 86(21):211101-3. [8] PILE D F P, GRAMOTNEV D K. Plasmonic subwavelength waveguides:next to zero losses at sharp bends[J]. Opt. Lett., 2005, 30(10):1186-1188. [9] XIAO S S, LIU L, QIU M. Resonator channel drop filters in a plasmon-polaritons metal[J]. Opt. Express., 2006, 14(7):2932-2937. [10] WANG B, WANG G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides[J]. Opt. Lett., 2004, 29(17):1992-1994. [11] TANAKA K, TANAKA M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide[J]. Appl. Phys. Lett., 2003, 82(8):1158-1160. [12] TANAKA K, TANAKA M, SUGIYAMA T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides[J]. Opt. Express, 2005, 13(1):256-266. [13] LIU L, HAN Z H, HE S L. Novel surface plasmon waveguide for high integration[J]. Opt. Exprress, 2005, 13(17):6645-6650. [14] VERONIS G, FAN S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Appl. Phys. Lett., 2005, 87(13):131102-3. [15] PILE D F P, GRAMOTNEV D K. Channel plasmon-polariton in a triangular groove on a metal surface[J]. Opt. Lett., 2004, 29(10):1069-1071. [16] BOZHEVOLNYI S I, VOLKOV V S, DEVAUX E, et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083):508-511. [17] 雷建国, 刘天航, 林景全, 等. 表面等离子体激元的若干新应用[J]. 中国光学与应用光学, 2010, 3(5):432-439. LEI J G, LIU T H, LIN J Q, et al.. New application of surface plasmon polaritons[J]. Chinese J. Optics and Applied Optics, 2010, 3(5):432-439.(in Chinese) [18] 陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体纳米激光器技术及应用研究进展[J]. 中国光学, 2012, 5(5):453-463. CHEN Y Y, TONG C ZH, QIN L, et al.. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5):453-463.(in Chinese) [19] ZIA R, SCHULLER J A, CHANDRAN A, et al. Plasmonics:the next chip-scale technology[J]. Materials Today, 2006, 9(7):20-27. [20] GUO X, MA Y, WANG Y, et al.. Nanowire plasmonic waveguides, circuits and devices[J]. Laser Photonics Reviews, 2013, 6(7):855-881. [21] WANG W, YANG Q, FAN F, et al.. Light propagation in curved silver nanowire plasmonic waveguides[J]. Nano Lett., 2011, 11(4):1603-1608. [22] LUO H, LI Y, CUI H, et al.. Dielectric-loaded surface plasmon-polariton nanowaveguides fabricated by two-photon polymerization[J]. Appl. Phys. A., 2009, 97(3):709-712. [23] GUO X, QIU M, BAO J, et al.. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits[J]. Nano Lett., 2009, 9(12):4515-4519. [24] OULTON R F, SORGER V J, GENOV D A, et al.. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photon, 2008, 2(8):496-500. [25] OULTON R F, SORGER V J, ZENTGRAF T, et al.. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264):629-632. [26] DAI D, YANG L, HE S. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires[J]. IEEE J. Lightwave Technol., 2008, 26(6):704-709. [27] DAI D, HE S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J]. Opt. Express, 2009, 17(19):16646-16653. [28] FUJⅡ M, LEUTHOLD J, FREUDE W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides[J]. IEEE Photon. Technol. Lett., 2009, 21(6):362-364. [29] ALAM M Z, MEIER J, AITCHISON J S, et al.. Super mode propagation in low index medium[C]. Photonic Applications Systems Technologies Conference. Optical Society of America, 2007. [30] ALAM M Z, MEIER J, AITCHISON J S, et al.. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends[J]. Opt. Express, 2010, 18(12):12971-12979. [31] WANG Z, DAI D, SHI Y, et al.. Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide[C]. Optical Fiber Communication Conference, OSA Technical Digest(CD), Optical Society of America, 2011. [32] ZHU S, LO G Q, KWONG D L. Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform[J]. IEEE Photonics Technology Letters, 2012, 24(14):1224-1226. [33] KIM J T, JU J J, PARK S, et al.. Hybrid plasmonic waveguide for low-loss lightwave guiding[J]. Opt. Express, 18, 2010, 18(3):2808-2813. [34] HUANG Q, BAO F, HE S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement[J]. Optics Express, 2013, 21(2):1430-1439. [35] DAI D, HE S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots[J]. Opt. Express, 2010, 18(17):7958 16653. [36] KWON M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology[J]. Opt. Express, 2011, 19(9):8379-8393. [37] GOYKHMAN I, DESIATOV B, LEVY U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide[J]. Appl. Phys. Lett., 2010, 97(14):141106-3. [38] KIM J T, JU J J, PARK S, et al.. Hybrid plasmonic waveguide for low-loss lightwave guiding[J]. Opt. Express, 2010, 18(3):2808-2813. [39] SONG Y, WANG J, LI Q, et al.. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide[J]. Opt. Express, 2010, 18(12):13173-13179. [40] ZHANG X Y, HU A, WEN J Z, et al.. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides[J]. Opt. Express, 2010, 18(18):18945-18959. [41] BIAN Y, ZHENG Z, ZHAO X, et al.. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration[J]. Optics Express, 2009, 17(23):21320-21325. [42] CHEN L, LI X, WANG G. A hybrid long-range plasmonic waveguide with sub-wavelength confinement[J]. Opt. Communications, 2013, 291:400-404. [43] CHU H, LI E, BAI P, et al.. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components[J]. Appl. Phys. Lett., 2010, 96(22):221103-3. [44] BIAN Y, ZHENG Z, LIU Y, et al.. Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement[J]. Opt. Express, 2011, 19(23):22417-22422. [45] WU M, HAN Z, VAN V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale[J]. Opt. Express, 2010, 18(11):11729-11737. [46] ZHU S, LO G Q, KWONG D L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides[J]. Optics Express, 2012, 20(6):5867-5881. [47] LOU F, WANG Z, DAI D, et al.. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides[J]. Appl. Phys. Lett., 2012, 100(24):241105-4. [48] GUAN X, CHEN P, WANG X, et al.. Ultrasmall directional coupler and disk-resonantor based on nano-scale silicon hybrid plasmonic waveguides[C]. Asia Communications and Photonics Conference, OSA Technical Digest(online), Optical Society of America, 2012. [49] WANG J, GUAN X, HE Y, et al.. Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides[J]. Opt. Express, 2011, 19 (2):838-847. [50] SONG Y, WANG J, YAN M, et al.. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter[J]. J. Optics, 2011, 13(7):075002. [51] SONG Y, WANG J, YAN M, et al.. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor[J]. J. Opt., 2011, 13(7):075001. [52] DAI D, SHI Y, HE S, et al.. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides[J]. Opt. Express, 2011, 19(24):23671-23682. [53] ZHU S, LO G Q, KWONG D L. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths[J]. Optics Express, 2012, 20(14):15232-15246. [54] ALAM M Z, AITCHISON J S, MOJAHEDI M. Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer[J]. Opt. Lett., 2012, 37(1):55-57. [55] SUN X, ALAM M Z, WAGNER S J, et al.. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform[J]. Opt. Lett., 2012, 37(23):4814-4816. [56] CHEE J, ZHU S, LO G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide[J]. Opt. Express, 2012, 20(23):25345-25355. [57] LOU F, DAI D, WOSINSKI L. Ultracompact polarization beam splitter based on a dielectric hybrid plasmonic dielectric coupler[J]. Opt. Lett., 2012, 37(16):3372-3374. [58] CASPERS J N, ALAM M Z, MOJAHEDI M. Compact hybrid plasmonic polarization rotator[J]. Opt. Lett., 2012, 37(22):4615-4617. [59] GUO L, HUO Y, HARRIS S J, et al.. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide[J]. IEEE Photon. Technol. Lett., 2013, 25(21):2081-2084. [60] ZHOU G, WANG T, PAN C, et al.. Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement[C]. Group IV Photonics(GFP), 2010 7th IEEE International Conference on, Beijing. IEEE, 2010: 69-71. [61] SUN X, ZHOU L, LI X, et al.. Design and analysis of a phase modulator based on a metal polymer silicon hybrid plasmonic waveguide[J]. Appl. Optics, 2011, 50(20):3428-3434. [62] ZHU S, LO G Q, KWONG D L. Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators[J]. Opt. Express, 2010, 18(26):27802-27819. [63] SUN R, DONG P, FENG N N, et al.. Horizontal single and multiple slot waveguides: optical transmission at lambda=1550 nm[J]. Opt. Express, 2007, 15(26):17967-17972. [64] SHENG Z, DAI D, HE S. Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends[J]. Selected Topics in Quantum Electronics, IEEE J., 2009, 15(5):1406-1412. [65] TOURNOISA P, LAUDE V. Negative group velocities in metal-film optical waveguides[J]. Optics Communications, 1997, 137(1):41-45. [66] HONG J M, RYU H H, PARK S R, et al.. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application[J]. IEEE Photon. Technol. Lett., 2003, 15(1):72 74. [67] YAMAZAKI T, AONO H, YAMAUCHI J, et al.. Coupled waveguide polarization splitter with slightly different core widths[J]. J. Lightwave Technol., 2008, 26(21):3528 3533. [68] AUGUSTIN L M, HANFOUG R, VAN DER TOL J J G M, et al.. A compact integrated polarization splitter/converter in InGaAsP-InP[J]. IEEE Photon. Technol. Lett., 2007, 19(17):1286-1288. [69] AO X, LIU L, LECH W, et al.. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type[J]. Appl. Phys. Lett., 2006, 89(17):171115-3. [70] GUAN X, WU H, SHI Y, et al.. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire[J]. Opt. Lett., 2013, 38(16): 3005-3008. [71] LIANG D, FIORENTINO M, OKUMURA T, et al.. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects[J]. Opt. Express, 2009, 17:20355-20364. [72] DONG P, FENG N N, FENG D, et al.. GHz-bandwidth optical filters based on high-order silicon ring resonators[J]. Opt. Express, 2010, 18(23):23784-23789. [73] XU Q, SCHMIDT B, PRADHAN S, et al.. Micrometre-scale silicon electro-optic modulator[J]. Nature, 2005, 435(7040):325-327. [74] WANG J, DAI D. Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring[J]. Opt. Lett., 2010, 35(24):4229-4231. [75] DEKKER R, USECHAK N, FORST M, et al.. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides[J]. J. Phys. D:Applied Physics, 2007, 40(14):R249-R271. [76] WANG X, LIN C Y, CHAKRAVARTY S, et al.. Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides[J]. Opt. Lett., 2011, 36(6):882-884. [77] LI Q, SONG Y, ZHOU G, et al.. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss[J]. Opt. Lett., 2010, 35(19):3153-3155. [78] DE LEON I, BERINI P. Amplification of long-range surface plasmons by a dipolar gain medium[J]. Nature Photon., 2010, 4(6):382-387. [79] NOGINOV M A, ZHU G, MAYY M, et al.. Stimulated emission of surface plasmon polaritons[J]. Phys. Rev. Lett., 2008, 101(22):226806-4. [80] AMBATI M, NAM S H, ULIN-AVILA E, et al.. Observation of stimulated emission of surface plasmon polaritons[J]. Nano Lett., 2008, 8(11):3998-4001. [81] VAN DEN HOVEN G N, KOPER R J I M, POLMAN A, et al.. Net optical gain at 1.53 mm in Er-doped Al2O3 waveguides on silicon[J]. Appl. Phys. Lett., 1996, 68(14):1886-1888. [82] GRANDIDIER J, DES FRANCS G C, MASSENOT S, et al.. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength[J]. Nano Letters, 2009, 9(8):2935-2939. [83] NEZHAD M P, TETZ K, FAINMAN Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides[J]. Opt. Express, 2004, 12(17):4072-4079. [84] GENOV D A, AMBATI M, ZHANG X. Surface plasmon amplification in planar metal films[J]. IEEE J. Quantum Electron., 2007, 43(11):1104-1108. [85] ALAM M Z, MEIER J, AITCHISON J S, et al.. Gain assisted surface plasmon polariton in quantum wells structures[J]. Opt. Express, 2007, 15(1):176-182. [86] PLUM E, FEDOTOV V A, KUO P, et al.. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots[J]. Opt. Express, 2009, 17(10):8548-8551. [87] DAI D, SHI Y, HE S, et al.. Gain enhancement in a Si hybrid plasmonic nano-waveguide with a low-index or high-index gain medium[J]. Opt. Express, 2011, 19(14):12925-12936.
  • [1] 宗楠, 胡蔚敏, 王志敏, 王小军, 张申金, 薄勇, 彭钦军, 许祖彦.  激光等离子体13.5 nm极紫外光刻光源进展 . 中国光学, 2020, 13(1): 28-42. doi: 10.3788/CO.20201301.0028
    [2] 梁志勋, 许川佩, 朱爱军, 胡聪, 杜社会.  基于介电常数近零态和铟锡氧化物集成硅基波导的电光半加器 . 中国光学, 2020, 13(5): 1001-1013. doi: 10.37188/CO.2020-0078
    [3] 朱业传, 苑伟政, 虞益挺.  表面等离子体平面金属透镜及其应用 . 中国光学, 2017, 10(2): 149-163. doi: 10.3788/CO.20171002.0149
    [4] 王五松, 张利伟, 张冶文.  表面等离子波导及应用 . 中国光学, 2015, 8(3): 329-339. doi: 10.3788/CO.20150803.0329
    [5] 王兴军, 周治平.  硅基光电集成用铒硅酸盐化合物光源材料和器件的研究进展 . 中国光学, 2014, 7(2): 274-280. doi: 10.3788/CO.20140702.0274
    [6] 蔡浩原.  高分辨率表面等离子体显微镜综述 . 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
    [7] 苏彦勋, 柯沅锋, 蔡士良, 姚芊瑜, 徐嘉妘, 龚柏谚.  层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池 . 中国光学, 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267
    [8] 窦银萍, 孙长凯, 林景全.  激光等离子体极紫外光刻光源 . 中国光学, 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020
    [9] 王二伟, 鱼卫星, 王成, 卢振武.  用表面等离子体共振传感器检测纳米间距 . 中国光学, 2013, 6(2): 259-266. doi: 10.3788/CO.20130602.0259
    [10] 丁武昌.  光管理在晶体硅电池中的应用 . 中国光学, 2013, 6(5): 717-728. doi: 10.3788/CO.20130605.0717
    [11] 任玉, 李付锦, 董旭, 林景全.  飞秒激光等离子体通道传导能量特性的研究进展 . 中国光学, 2012, 5(2): 133-142. doi: 10.3788/CO.20120502.0133
    [12] 陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙.  表面等离子体激元纳米激光器技术及应用研究进展 . 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
    [13] 张琨, 岳远斌, 李彤, 孙小强, 张大明.  感应耦合等离子体刻蚀在聚合物光波导制作中的应用 . 中国光学, 2012, 5(1): 64-70. doi: 10.3788/CO.20120501.0064
    [14] 叶继飞, 洪延姬, 王广宇, 李南雷.  激光等离子体微推进技术的研究进展 . 中国光学, 2011, 4(4): 319-326.
    [15] 刘镜, 刘娟, 王涌天, 谢敬辉.  亚波长金属光栅的表面等离子体激元共振特性 . 中国光学, 2011, 4(4): 363-368.
    [16] YANG T, HO H P.  基于银膜孔阵列超强透射效应的相敏表面等离子体共振传感器的仿真研究 . 中国光学, 2010, 3(1): 57-63.
    [17] MA Jun-xian, FANG Yu, CHEN Bi-bo, TAN Rui-hu, LUO Xian-gang.  T型缝隙结构表面等离子波导的基本特性研究 . 中国光学, 2010, 3(1): 89-92.
    [18] 雷建国, 刘天航, 林景全, 高勋, 厉宝增.  表面等离子体激元的若干新应用 . 中国光学, 2010, 3(5): 432-439.
    [19] LIU Juan, WANG Yong-tian, XU Li-wei, XIE Jing-hui.  表面等离子体波在金属纳米缝超强透射中的作用 . 中国光学, 2010, 3(1): 33-37.
    [20] 郝影, 孔梅, 卢俊.  带有增益的单微环谐振器的光速控制行为 . 中国光学, 2009, 2(6): 482-488.
  • 加载中
计量
  • 文章访问数:  731
  • HTML全文浏览量:  87
  • PDF下载量:  614
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-13
  • 修回日期:  2014-01-12
  • 刊出日期:  2014-03-25

硅基混合表面等离子体纳米光波导及集成器件

    基金项目:

    国家高技术研究发展计划(863计划)资助项目(No.2011AA010301);国家自然科学基金资助项目(No.11374263);教育部博士点基金资助项目(No.20120101110094)

    作者简介:

    管小伟(1988-),男,河南新蔡人,博士研究生,2009年于东南大学获得学士学位,主要从事硅纳米线波导和硅基混合表面等离子体纳米光波导及集成器件等方面的研究。E-mail:guanxiaowei@coer.zju.edu.cn

    通讯作者: 戴道锌,E-mail:dxdai@zju.edu.cn
  • 中图分类号: TN252;TN256

摘要: 总结并展望了硅基混合表面等离子体纳米光波导及集成器件方面的理论和实验研究工作。首先介绍了几种硅基混合表面等离子体纳米光波导结构,其尺寸可小至100 nm以下,而传播长度达100 m量级;其次介绍了基于硅基混合表面等离子体纳米光波导的功分器、偏振分束器和谐振器等集成器件,其尺寸为亚微米量级;最后探讨了硅基混合表面等离子体纳米光波导与硅纳米线光波导的耦合及对其进行增益补偿。

English Abstract

管小伟, 吴昊, 戴道锌. 硅基混合表面等离子体纳米光波导及集成器件[J]. 中国光学, 2014, 7(2): 181-195.
引用本文: 管小伟, 吴昊, 戴道锌. 硅基混合表面等离子体纳米光波导及集成器件[J]. 中国光学, 2014, 7(2): 181-195.
GUAN Xiao-wei, WU Hao, DAI Dao-xin. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J]. Chinese Optics, 2014, 7(2): 181-195.
Citation: GUAN Xiao-wei, WU Hao, DAI Dao-xin. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J]. Chinese Optics, 2014, 7(2): 181-195.
参考文献 (1)

目录

    /

    返回文章
    返回