[1] |
LEE H C, GAENSSLEN R E. Advances in Fingprint Technology[M]. Elsevier, 1991.
|
[2] |
TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitridelight-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441:325-328. doi: 10.1038/nature04760
|
[3] |
HIRAVAMA H, TSUKADA Y, MAEDA T, et al.. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multi quantum-barrier electronlocking layer[J]. Appl. Phys. Express, 2010, 3:031002. doi: 10.1143/APEX.3.031002
|
[4] |
KHAN M A, SHATALOV M, MARUSKA H P, et al.. Ⅲ-Nitride UV devices[J]. Jpn. J. Appl. Phys., 2005, 44(10):7191-7206. doi: 10.1143/JJAP.44.7191
|
[5] |
王立军, 宁永强, 秦莉, 等.大功率半导体激光器研究进展[J].发光学报, 2015, 36(1):1-19. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htmWANG L J, NING Y Q, QIN L, et al.. Development of high power diode laser[J]. Chinese J. Luminescence, 2015, 36(1):1-19.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm
|
[6] |
李珂, 石鹏, 张晓波, 等.双透镜系统光学整形元件的设计制作[J].中国激光, 2010, 37(8):1972-1977. doi: 10.3788/CJLLI K, SHI P, ZHANG X B, et al.. Design and preparation of diffraction optical element in dual lens system[J]. Chinese J. Lasers, 2010, 37(8):1972-1977.(in Chinese) doi: 10.3788/CJL
|
[7] |
马浩统, 周朴, 王小林, 等.基于液晶空间光调制器的激光光束近场整形[J].光学学报, 2010, 30(7):2032-2036. doi: 10.3788/AOSMA H T, ZHOU P, WANG X L, et al.. Near-field beam shaping based on liquid crystal spatial light modulator[J]. Acta Optica Scinica, 2010, 30(7):2032-2036.(in Chinese) doi: 10.3788/AOS
|
[8] |
陈凯, 李平雪, 陈檬, 等.高斯光束整形为平顶光束的非球面系统设计和面形参数分析[J].激光与光电子学进展, 2011, 48(3):032201. http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201103010.htmCHEN K, LI X P, CHEN M, et al.. Design and analysis of surface parameters of aspheric lenses system converting Gaussian beam to flattop beam[J]. Laser & Optoelectronics Progress, 2011, 48(3):032201.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201103010.htm
|
[9] |
金国藩, 严瑛白, 邬敏贤, 等.二元光学[M].北京:国防工业出版社, 1998.JIN G F, YAN Y B, WU M X, et al.. Binary Optics[M]. Bingjing:National Defense Industry Press, 1998.(in Chinese)
|
[10] |
STEFAN H, BEN L, BORIS R, et al.. Single emitter based diode lasers with high brightness and narrow linewidth[J]. Proc. SPIE, 2011, 7918:79180M. https://www.researchgate.net/publication/252552659_Single_Emitter_Based_Diode_Lasers_with_High_Brightness_High_Power_and_Narrow_Linewidth
|
[11] |
PAUL W, BERND K H, KARSTEN R, et al.. High-power, high-brightness and low-weight fiber coupled diode laser device[J]. SPIE, 2011, 7918:PSI79180O. https://www.researchgate.net/publication/253092491_High-power_high-brightness_and_low-weight_fiber_coupled_diode_laser_device
|
[12] |
KITCHING J, KNAPPE S. A microwave frequency reference based in VCSEL driven dark line resonances in Cs vapor[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(6):1313-1317. doi: 10.1109/19.893276
|
[13] |
MILLER M, GRANBHERR M. Improved output performance of high-power VCSELs[J]. IEEE J Sel Top Quantum Electron, 2001, 7:210-216. doi: 10.1109/2944.954132
|
[14] |
田锟, 邹永刚, 马晓辉, 等.面发射分布反馈半导体激光器[J].中国光学, 2016, 9(1):51-64. doi: 10.3788/co.TIAN K, ZOU Y G, MA X H, et al.. Surface emitting distributed feedback semiconductor lasers[J]. Chinese Optics, 2016, 9(1):51-64.(in Chinese) doi: 10.3788/co.
|
[15] |
戚晓东, 叶淑娟, 张楠, 等.面发射分布反馈半导体激光器及光栅耦合半导体激光器[J].中国光学与应用光学, 2010, 3(5):415-431. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201005003.htmQI X D, YE S J, ZHANG N, et al.. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese J. Optics and Applied Optics, 2010, 3(5):415-431. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201005003.htm
|
[16] |
TOBY J G, DON O, YAN X, et al.. Long wavelength surface-emitting distributed feedback (SE-DFB) laser for range finding applications[J]. SPIE, 2012, 8241:824113-4. https://www.researchgate.net/publication/258711644_Long_wavelength_Surface-Emitting_Distributed_Feedback_SE-DFB_laser_for_range_finding_applications
|
[17] |
LIANG G Z, LIANG H K, ZHANG Y, et al.. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Optics Express, 2013, 21(26):31878-31882.
|
[18] |
CLEMENS S, ELVIS M, SANG I A, et al.. Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers[J]. Applied Physics Letters, 2012, 100(19):191103-3. doi: 10.1063/1.4712127
|
[19] |
CLEMENS S, ROLF S, SANG I A, et al.. Linearly polarized light from substrate emitting ring cavity quantumcascade lasers[J]. Applied Physics Letters, 2013, 103(8):081101-3. doi: 10.1063/1.4819034
|
[20] |
SHOICHI K, TAKESHI K, YASUHIRO N, et al.. GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding[J]. Applied Physics Letters, 2010, 97(25):251112-3. doi: 10.1063/1.3528352
|
[21] |
WU T T, CHEN C C, LU T C, et al.. Effects of lattice types on GaN-based photonic crystal surface-emitting lasers[J]. Quantum Electronics, 2015, 21(1):1700106.
|
[22] |
ZHAO D Y, LIU S, YANG H J, et al.. Printed large-area single-mode photonic crystal bandedge surface-emitting lasers on silicon[J]. Scientific Reports, 2016, 6:18860. doi: 10.1038/srep18860
|
[23] |
OSOWSKI M L, LAMMERT R M. High Power Frequency Stabilized Surface Emitting Arrays[R]. Osowski-SSDLTR, 2005.
|
[24] |
MOEHRLE M, KREISSL J, MOLZOW W D, et al.. Ultra-low threshold 1490 nm surface-emitting BH-DFB laser diode with integrated monitor photodiode[C]. 22nd International Conference on Indium Phosphide & Related Materials (IPRM), IEEE, 2010:TuA3-4.
|
[25] |
LI S, BOTEZ D. Design for high-power single-mode operation from 2-D surface-emitting ROW-DFB lasers[J]. Photonics Technology Letters, 2005, 17(3):519-521. doi: 10.1109/LPT.2004.842388
|
[26] |
LI S, BOTEZ D. Analysis of 2-D Surface-Emitting ROW-DFB Semiconductor Power Single-Mode Operation[J]. J. Quantum Electronics, 2007, 43(8):655-667. doi: 10.1109/JQE.2007.900264
|
[27] |
HOFLING S, HEINRICH J, REITHMAIER J P, et al.. Widely tunable single-modequantum cascade lasers with two monolithically coupled Fabry-P rot cavities[J]. Appl. Phys. Lett., 2006, 89:241126. doi: 10.1063/1.2404933
|
[28] |
MARTIN S, FARHAN R. Analysis of Terahertz surface emitting quantum-cascade lasers[J]. J. Quantum Electronics, 2006, 42(3):257-265. doi: 10.1109/JQE.2005.863138
|
[29] |
LYAKH A, ZORY P, BOTEZ D, et al.. Substrate-emitting, distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 2007, 91:181116. doi: 10.1063/1.2803851
|
[30] |
MAISONS G, CARRAS M, GARCIA M, et al.. Substrate emitting index coupled quantum cascade lasers using biperiodic top metal grating[J]. Applied Physics Letters, 2009, 94(15):151104. doi: 10.1063/1.3113524
|
[31] |
SIGLER C, KIRCH J D, EARLES T, et al.. Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes[J]. Applied Physics Letters, 2014, 1049(13):131108. https://www.researchgate.net/publication/261318558_Design_for_high-power_single-lobe_grating-surface-emitting_quantum_cascade_lasers_enabled_by_plasmon-enhanced_absorption_of_antisymmetric_modes
|
[32] |
BOYLE C, SIGLER C, KIRCH J D, et al.. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode[J]. Applied Physics Letters, 2016, 108:121107. doi: 10.1063/1.4944846
|
[33] |
GUO W H, LU Q Y, LIU J Q, et al.. Analysis of surface emitting distributed-feedback quantum cascade laser based on a surface-plasmon waveguide[J]. J. Semiconductors, 2010, 31(11):114014. doi: 10.1088/1674-4926/31/11/114014
|
[34] |
GUO W H, LIU J Q, CHEN J Y, et al.. Single-mode surface-emitting, distributed feedback quantum-cascade lasers based on hybrid waveguide structure[J]. Chinese Optics Letters, 2011, 9(6):061404. doi: 10.3788/COL
|
[35] |
叶淑娟, 秦莉, 戚晓东, 等.二阶光栅分布反馈半导体激光器的出光特性[J].中国激光, 2010, 37(9):2371-2375. doi: 10.3788/CJLYE SH J, QIN L, QI X D, et al.. Emission characteristics of second-order distributed feedback semiconductor lasers[J]. Chinese J. Lasers, 2010, 37(9):2371-2375.(in Chinese) doi: 10.3788/CJL
|
[36] |
CHEN Y Y, QIN L, JIA P, et al.. High power narrow far-field broad-stripe semiconductor lasers with second-order metal grating feedback[J]. Semiconductor Lasers and Applications, 2012, 8552:85520E. https://www.researchgate.net/publication/259130556_High_Power_Narrow_far-field_Broad-Stripe_Semiconductor_Lasers_with_Second-Order_Metal_Grating_Feedback
|
[37] |
CHEN J Y, KIU J Q, GUO W H, et al.. High-power surface-emitting surface-plasmon-enhanced distributed feedback quantum cascade lasers[J]. Photonics Technology Letters, 2012, 24(11):972-974. doi: 10.1109/LPT.2012.2192724
|
[38] |
YAO D Y, LIU F Q, ZHANG J C, et al.. High power surface metal grating distributed feedback quantum cascade lasers emitting at λ~8.3μm[J]. Chinese Physics Letter, 2012, 29(9):94205. doi: 10.1088/0256-307X/29/9/094205
|
[39] |
YAO D Y, ZHANG J C, LIU F Q, et al.. Surface-emitting quantum cascade lasers operation in continuous-wave mode above 70℃ at λ-4.6μm[J]. Applied Physics Letters, 2013, 103:041121. doi: 10.1063/1.4816722
|
[40] |
TAN S Y, ZHAI T, LU D, et al.. Fabrication and characterization of high power 1064-nm DFB lasers[J]. Chinese Physics Letter, 2013, 30(11):114202. doi: 10.1088/0256-307X/30/11/114202
|
[41] |
ZHANG J C, LIU F Q, YAO D Y, et al.. Multi-wavelength surface emitting quantum cascade lasers based on equivalent phase shift[J]. J. Applied Physics, 2014, 115:033106. doi: 10.1063/1.4862649
|
[42] |
YAO D Y, ZHANG J C, LIU F Q, et al.. 1.8W room temperature pulsed operation substrate-emitting quantum cascade lasers[J]. IEEE Photonics Technology Letters, 2014, 26(4):323-325. doi: 10.1109/LPT.2013.2293495
|
[43] |
LIU Y H, ZHANG J C, JIA Z W, et al.. Top grating, surface-emitting DFB quantum cascade lasers in continuous-wave operation[J]. Photonics Technology Letters, 2015, 27(17):1829-1832. doi: 10.1109/LPT.2015.2443780
|
[44] |
TOBY J G, DON O, YAN X, et al.. High-power surface emitting distributed feedback (SE-DFB) lasers[J]. 2012 IEEE Photonics Society Summer Topical Meeting, IEEE, 2012:1-2. https://www.researchgate.net/publication/261036286_High-power_surface_emitting_distributed_feedback_SE-DFB_lasers
|
[45] |
KANSKAR M, CAI J, KEDLAYA D, et al.. High brightness 975 nm surface-emitting distributed feedback laser & arrays[J]. SPIE, 2010, 7686:76860J. https://www.researchgate.net/publication/238554158_High_Brightness_975_nm_Surface-emitting_Distributed_Feedback_Laser_Arrays
|
[46] |
TURNBULL G A, CARLETON A, BARLOW G F, et al.. Influence of grating characteristics on the operation of circular-grating distributed feedback polymer lasers[J]. J. Applied Physics, 2005, 98:023105. doi: 10.1063/1.1935131
|
[47] |
YU S F, LI X F. Design and analysis of terahertz surface-emitting distributed-feedback lasers with circular metal grating[C]. IEEE 3rd International Nanoelectronics Conference, IEEE, 2010:1-2.
|
[48] |
LIANG G Z, LIANG H K, ZHANG Y, et al.. Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Applied Physics Letters, 2013, 102:031119. doi: 10.1063/1.4789535
|
[49] |
ROLF S, CLEMENS S, TOBIAS Z, et al.. Grating-based far field modifications of ring quantum cascade lasers[J]. Optics Express, 2014, 22(13):15829-15836. doi: 10.1364/OE.22.015829
|
[50] |
MEIER M, MEKIS A, DODABALAPUR A, et al.. Laser action from two-dimensional distributed feedback in photonic crystal[J]. Applied Physics Letters, 1999, 74:7. doi: 10.1063/1.123116
|
[51] |
IMADA M, NODA S, CHUTINAN A, et al.. Coherent two-diamwnsional lasing action in surface-emitting laser with triandular-lattice photonic crystal structure[J]. Applied Physics Letters, 1999, 75:316. doi: 10.1063/1.124361
|
[52] |
NODA S, YOKOYAMA M, IMADA M, et al.. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design[J]. Science, 2001, 293:1123. doi: 10.1126/science.1061738
|
[53] |
IMADA M, CHUTINAN A, NODA S, et al.. Multidirectionally distributed feedback photonic crystal lasers[J]. Phys. Rev. B, 2002, 65:195306. doi: 10.1103/PhysRevB.65.195306
|
[54] |
VURGAFTMAN I, MEYER J R. Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers[J]. IEEE J. Quantum Electron, 2003, 39:689-700. doi: 10.1109/JQE.2003.811943
|
[55] |
OHNISHI D, OKANO T, IMADA M, et al.. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser[J]. Optical Express, 2004, 12:1562-1568. doi: 10.1364/OPEX.12.001562
|
[56] |
MIYAI E, SAKAI K, OKANO T, et al.. Photonics:Lasers producing tailored beams[J]. Nature, 2006, 441:946-948. doi: 10.1038/441946a
|
[57] |
MATSUBARA H, YOSHIMOTO S, SAITO H, et al.. GaN photo-crystal surface-wmitting laser at blue-violet wavelengths[J]. Science, 2008, 319:445-447. doi: 10.1126/science.1150413
|
[58] |
KIM M, KIM C S, BEWLEY W, et al.. Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared[J]. Applied Physics Letters, 2006, 88:191105. doi: 10.1063/1.2203234
|
[59] |
CHASSAGNEUX Y, COLOMBELLI R, MAINEULT W, et al.. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions[J]. Nature, 2009, 457:174-178. doi: 10.1038/nature07636
|
[60] |
KUROSAKA Y, IWAHASHI S, LIANG Y, et al.. On-chip beam-steering photonic-crystal lasers[J]. Photonics, 2010, 4:447-450. doi: 10.1038/nphoton.2010.118
|
[61] |
XU G Y, VIRGINIE M, YANNICK C, et al.. Surface-emitting quantum cascade lasers with metallic photonic-crystal resonators[J]. Applied Physics Letters, 2009, 94:221101-3. doi: 10.1063/1.3143652
|
[62] |
LIANG Y, TSUYOSHI O, KYOKO K, et al.. Mode stability in photonic-crystal surface-emitting lasers with large κ1DL[J]. Applied Physics Letters, 2014, 104:021102-3. doi: 10.1063/1.4861708
|