-
摘要: 本文利用严格数值仿真研究了550~700 nm波段的可见光通过金属光栅耦合方式激发的表面等离激元(SPP)波在金属表面的光栅衍射行为与现象。研究结果表明:SPP波在金属表面的衍射行为与自由空间光相比有极大不同,由于SPP波的近场属性,经金属光栅衍射后在近场可表现出明显的光栅分光现象,但经过一段传输距离后则分光现象消失而表现为不同级次的光合为同一束光;在近场衍射情况下,其情况与自由空间光衍射行为类似,对SPP亚波长金属光栅来说同样只有零级透射光;而当金属光栅周期大于SPP波长时,高级衍射级次则开始出现。研究结果对下一步在金属表面上实现微米级片光谱仪器具有重要借鉴意义。Abstract: In this paper, a rigorous numerical simulation method(FDTD) is employed to study the grating diffractive behavior of surface plasmon polariton(SPP) waves on meta-surface excited by the incident visible light through metallic grating coupler in 550-700 nm waveband. The simulation results indicate that the diffraction of SPP waves on meta-surface is quite different from that of free space light. Due to the near-field characteristics, the SPP wave shows obvious diffractive effect in near field when it interacts with a metallic grating. However, the different diffracted orders will merge into one after propagating some distances. Nevertheless, the diffractive behavior in near-field is similar to that in free space. In near field, only the 0th order light is transmitted when metallic gratings have a sub-wavelength period and higher diffraction orders appear when the period of metallic gratings is larger than the wavelength of SPP waves. The research results of this paper are of great significance for designing spectroscopic devices or systems on meta-surface with a micronscale.
-
图 3 波长在550~700 nm内,入射角度在10°~15°范围内时,金属光栅结构的反射率与波长和入射角的关系图:(a)三维关系图;(b)反射率曲线图
Figure 3. Relationship between the reflectivity of the metal grating structure and wavelength for different incident angles for the wavelength in the range of 550-700 nm and the incident angle in the range of 10°-15°. (a)3D Diagram; (b)2D curve
图 4 波长λ=625 nm的入射光激发的SPP波在周期不同,占空比一定的条件下的衍射现象(图中白色断线表示金属衍射光栅的位置)
Figure 4. Diffraction phenomenon of SPP wave of incidence light with wavelength of 625 nm when diffraction grating with different period but the same filling factor(It should be noted that the white dashed line represents the location of the diffraction grating)
图 5 入射光波长λ=625 nm, 衍射光栅周期为910 nm,占空比不同时的衍射现象,其中白色虚线表示金属光栅的位置。(a)占空比为0.1;(b)占空比为0.3;(c)占空比为0.5;(d)占空比为0.7;(e)占空比为0.9;(f)衍射光栅占空比不同时,金属薄膜表面上x=0直线上的近场衍射电场强度曲线图
Figure 5. Diffraction phenomenon of SPP wave for an incidence light with wavelength of 625 nm for diffraction grating with different duty ratios and the fixed grating period. (a)Duty radio is 0.1; (b)Duty radio is 0.3; (c)Duty radio is 0.5; (d)Duty radio is 0.7; (e)Duty radio is 0.9; (f)Electric field intensity distribution of the diffraction patterns along y axis under different duty radio at x=0
图 6 自由空间光与超表面上光栅近场衍射行为对比结果图:(a)空间光的近场衍射装置图;(b)SPP波超表面上的光栅近场衍射图;(c)自由空间光的光栅近场衍射图;(d)对应(b)在距衍射光栅0.95 μm处X方向上的电场分布图;(e)对应(c)在距衍射光栅0.95 μm处Z方向上的电场分布图;(f)对应(d)、(e)在金属薄膜表面处的电场强度曲线
Figure 6. Comparison of near field diffraction of SPP wave and free space light: (a)theoretical model for near field diffraction of free space light; (b)near field diffraction of SPP on meta-surface; (c)near field diffraction in free space light; (d)electric field distribution in X direction at 0.95 μm from diffraction grating corresponding to (b); (e)electric field distribution in Z direction at 0.95 μm corresponding to (c); (f)electric field intensity at the surface of the metal film corresponding to (d), (e)
图 8 (a) 对应图 7(a)所示结构,入射波长为625 nm的近场衍射;(b)对应图 7(b)所示结构,波长625 nm时近场衍射;(c)对应图 7(b)所示结构,入射光波长为550~700 nm的近场衍射曲线图。图中左侧白色虚线表示衍射光栅所在位置
Figure 8. (a)Near field diffraction of the incident light at 625 nm Corresponding to Fig. 7(a); (b)near field diffraction of the incident light at 625 nm Corresponding to Fig. 7(b); (c)curve of near field diffraction of the incident light at 550-700 nm corresponding to Fig. 7(b). White dashed line in the figure(ieft sode) represents the grating location
-
[1] 梁秋群. 金属纳米结构表面等离激元杂化和吸收特性的研究[D]. 北京: 中国科学院大学, 2015. http://www.irgrid.ac.cn/handle/1471x/1004792LIANG Q Q. Study on plasmon hybridization and optical absorption properties of metallic mano-structures[D]. Beijing: University of the Chinese Academy of Sciences, 2015. (in Chinese) http://www.irgrid.ac.cn/handle/1471x/1004792 [2] 曹水艳. 表面等离子体结构聚焦和吸收特性的研究[D]. 北京: 中国科学院大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htmCAO SH Y. Study on the property of focusing and absorption of plasmonic nanostructures[D]. Beijing: University of the Chinese Academy of Sciences, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm [3] LIU N, MESCH M, WEISS T, et al.. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett., 2010, 10(7):2342-2348. doi: 10.1021/nl9041033 [4] DREGELY D, TAUBERT R, GIESSEN H, et al.. 3D optical Yagi-Uda nanoantenna array[J]. Nat. Commun., 2011, 2:267. doi: 10.1038/ncomms1268 [5] CAI W, SHALAE V V. Optical metamaterials:fundamentals and applications[J]. Contemporary Physics, 2012, 53(3):278-279. doi: 10.1080/00107514.2012.661780 [6] YANG J Z, WANG T S, CHEN Z L, et al.. Super-resolution imaging at mid-infrared waveband in graphene-nanocavity formed on meta-surface[J]. Scientific Reports, 2016, 6:37898. doi: 10.1038/srep37898 [7] 肖钰斐, 张卫平, 黄海华, 等.金属光栅结构对表面等离子体共振的影响[J].中国激光, 2013, 40(11):245-250. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201311044&dbname=CJFD&dbcode=CJFQXIAO Y F, ZHANG W P, HUANG H H, et al.. Influence of function of metal grating shape on surface plasmon resonance[J]. Chinese J. Laser, 2013, 40(11):245-250.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201311044&dbname=CJFD&dbcode=CJFQ [8] 刘媛媛, 熊广, 王杨, 等.多谐振斦形缝隙纳米天线设计及吸收特性[J].光学 精密工程, 2017, 25(8):2155-2164. http://www.eope.net/gxjmgc/CN/abstract/abstract17156.shtmlLIU Y Y, XIONG G, WANG Y, et al.. Design of multi resonant U shaped slots nano-antenna and their absorption properties[J]. Opt. Precision Eng., 2017, 25(8):2155-2164.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract17156.shtml [9] 陈烽, 叶雄英, 伍康, 等.双波长集成光栅干涉微位移测量方法[J].光学 精密工程, 2012, 20(11):2433-2438. http://www.cqvip.com/QK/92835A/201211/43959045.htmlCHEN F, YE X Y, WU K, et al.. Displacement measurement method based on integrated grating interferometry with two-wavelength lasers[J]. Opt. Precision Eng., 2012, 20(11):2433-2438.(in Chinese) http://www.cqvip.com/QK/92835A/201211/43959045.html [10] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nat. Mater., 2008, 7:435-441. doi: 10.1038/nmat2141 [11] 胡昌奎. 基于纳米金属光栅结构的表面等离子体共振传感研究[D]. 武汉: 华中科技大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D152529HU CH K. Study on surface plasmon resonance sensor basde on nano metallic surface-relief grating[D]. Wuhan: Huazhong University of Science & Technology, 2010. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D152529 [12] 张善文, 巴音贺希格.宽波段金属光栅设计中闪耀波长对光栅异常的补偿效应[J].光学 精密工程, 2009, 17(5):990-1000. https://www.cnki.com.cn/qikan-GXJM200905012.htmlZHANG SH W, BAYINHESHIG. Compensating effect of blazed wavelength to grating anomalies in design of broadband metallic diffraction gratings[J]. Opt. Precision Eng., 2009, 17(5):990-1000.(in Chinese) https://www.cnki.com.cn/qikan-GXJM200905012.html [13] RAETHER H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Springer-Verlag Berlin Heidelberg, 1988. [14] 石顺祥, 刘继芳, 孙艳玲.光的电磁理论:光波的传播与控制[M].西安:西安电子科技大学出版社, 2006.SHI SH X, LIU J F, SUN Y L. Electromagnetic Theory of Light:Propagation and Control of Light[M]. Xi'an:University of Xi'an Electronic Science and Technology Press, 2006.(in Chinese) [15] GAZZPLA E, BRIGO L, ZACCO G, et al.. Coupled SPP modes on 1D plasmonic gratings in conical mounting[J]. Plasmonics, 2014, 9(4):867-876. doi: 10.1007/s11468-013-9624-9