Structured illumination super-resolution microscopy technology: review and prospect
doi: 10.3788/CO.20181103.0307
-
摘要: 结构光照明显微镜(Structured Illumination Microscopy,SIM)通过结构化照明在频率域以空间混频的方式将物体高频信息载入光学系统的探测通带内实现突破衍射极限的超分辨光学显微成像。SIM凭借其较低的激发光强、对荧光染料的非特异性需求以及快速的宽场成像优势已成为活细胞超分辨光学显微成像方面应用最多的技术。本文系统回顾了SIM的技术进展,对SIM的基本原理与实现方法进了详细的分析,重点介绍了本课题组研发的基于光谱分辨的单光子激发超分辨显微镜和结合自适应光学的双光子激发超分辨显微镜这两种最新的SIM技术,最后简要讨论了SIM技术在生物成像中的应用及未来发展方向。Abstract: Structured illumination microscopy(SIM) is capable of providing super-resolution imaging. It breaks the diffraction limit by moving the high-frequency information of objects into the detectable frequency band of the optical imaging system via frequency mixing. Due to its attractive advantages, such as low intensity illumination, independence of particular fluorescent dyes, and rapid wide-field imaging capability, SIM has become the most popular technique for super-resolution imaging of living cells. This paper first systematically summarizes advances in the development of SIM and introduces corresponding principles at the same time. Then, two novel techniques of SIM developed by our group, including the single-photon excited super-resolution microscopy based on spectral unmixing and the two-photon excited super-resolution microscopy combined with adaptive optics, are particularly introduced in detail. At last, the recent applications and future directions of SIM in biological imaging are briefly discussed.
-
图 1 基于相干光照明与非相干光照明的SIM技术。基于相干光照明的SIM技术包括:二维结构光照明显微镜(2D-SIM)与三维结构光照明显微镜(3D-SIM)
Figure 1. WF-SIM technologies based on coherent illumination and incoherent illumination. WF-SIM technology based on coherent illumination includes two-dimensional structured illumination microscopy(2D-SIM) and three-dimensional structured illumination microscopy(3D-SIM)
图 2 非线性SIM技术原理[15]。(a)左图表示随着照明强度增加,激发出的荧光强度逐渐趋于饱和;右图表示不同饱和状态下激发出的荧光信号在时域空间的分布,逐渐表现出高阶谐波信号;(b)下图表示的是不同饱和状态下高阶谐波分量在频域空间的分布,体现更高频分量的出现与增加
Figure 2. Principle of nonlinear SIM technology[15]. (a)Left graph shows that the fluorescence intensity tends to be saturated with the increase of the illumination intensity. Right graph shows the distribution of the fluorescence signal at different saturation states in spatial domain, which gradually presents high-order harmonic signals. (b)Figure below shows the distribution of high-order harmonic components at different saturation states in Fourier domain, reflecting the emergence and increase of higher order harmonic components.
图 6 基于光谱分辨的单光子激发超分辨显微成像[78]。SYTO 82与LysoTracker Red分别标记了bEnd3型活细胞的细胞核(图中红色)与溶酶体(图中绿色);(a, e)普通的RE-scan超分辨图像;(d, h)基于光谱分辨的RE-scan超分辨图像;(b, f)和(c, g)分别为光谱解混分离出的细胞核和溶酶体;(i)为两种染料的荧光光谱
Figure 6. Single-photon excitation superresolution microscopy imaging based on spectral resolution[78]. SYTO 82 and LysoTracker Red respectively label the nuclei(red in the figure) and lysosomes(green in the figure) of bEnd3-type live cells; (a, e) are normal RE-scan super-resolution images; (d, h) are spectrally resolved RE-scan super-resolution images; (b, f) and (c, g) are the nucleus and lysosomes isolated by spectral unmixing; i is the fluorescence spectrum of two dyes
图 7 结合自适应光学的双光子激发超分辨显微成像[79]。a、b、c、d及e、f分别为普通双光子激发超分辨显微镜、基于自适应光学的双光子激发超分辨显微镜与基于自适应光学的双光子激发超分辨显微镜,并结合图像减卷积处理后的细胞骨架成像结果;g~l分别为e图对应区域的放大图;m表示系统的横向与纵向分辨率;n表示自适应校正前后的波前相位图
Figure 7. Two-photon excitation superresolution microscopy combining with adaptive optics[79]. a, b, c, d and e, f are the fluorescence cytoskeleton images taken from two-photon excited super-resolution microscope, two-photon excited super-resolution microscope with adaptive optics and two-photon excited super-resolution microscope with adaptive optics and deconvolution analysis; g-l are respectively enlarged views of corresponding area in figure e; m represents the latral and axial resolutions of the system; n represents the wave front phase diagram before(left)and after(right) the AO correction
表 1 Implementation methods of WF-SIM technology
Table 1. Implementation methods of WF-SIM technology
WF-SIM Technology 2D-SIM 3D-SIM Illumination source Coherent light Incoherent light Coherent light Structure light generating device grating/DMD/SLM DMD/SLM grating/SLM Probe signal Fluorescence Fluorescence, reflected light Fluorescence Nonlinear SIM √ - - 表 2 Implementation methods of PS-SIM technology
Table 2. Implementation methods of PS-SIM technology
PS-SIM technology ISM OPRA/RE-scan MSIM iSIM Excitation mode Single photon/Two photon Single photon/Two photon Single photon/Two photon Single photon Scanning device Galvanometer Galvanometer DMD/Spinning disk/lens array+Galvanometer Spinning disk/lens array+Galvanometer Photon reassignment mode Digital Optics Digital Optics -
[1] ABBE E. Contributions to the theory of the microscope and that microscopic perception[J]. Arch. Microsc. Anat, 1873, 9:413-468. doi: 10.1007/BF02956173 [2] HUANG B, BATES M, ZHUANG X. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78:993-1016. doi: 10.1146/annurev.biochem.77.061906.092014 [3] SCHERMELLEH L, HEINTZMANN R, LEONHARDT H. A guide to super-resolution fluorescence microscopy[J]. The Journal of Cell Biology, 2010, 190(2):165-175. doi: 10.1083/jcb.201002018 [4] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782. doi: 10.1364/OL.19.000780 [5] KLAR T A, JAKOBS S, DYBA M, et al.. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences, 2000, 97(15):8206-8210. doi: 10.1073/pnas.97.15.8206 [6] BETZIG E, PATTERSON G H, SOUGRAT R, et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645. doi: 10.1126/science.1127344 [7] HESS S T, GIRIRAJAN T P K, MASON M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11):4258-4272. doi: 10.1529/biophysj.106.091116 [8] SHROFF H, GALBRAITH C G, GALBRAITH J A, et al.. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5):417-423. doi: 10.1038/nmeth.1202 [9] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J]. Nature Methods, 2006, 3(10):793-795. doi: 10.1038/nmeth929 [10] BATES M, HUANG B, DEMPSEY G T, et al.. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845):1749-1753. doi: 10.1126/science.1146598 [11] HUANG B, WANG W, BATES M, et al.. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864):810-813. doi: 10.1126/science.1153529 [12] HEINTZMANN R, CREMER C. Laterally modulated excitation microscopy:improvement of resolution by using a diffraction grating[J]. Proc. SPIE, 1999, 3568:185-196. doi: 10.1117/12.336833 [13] GUSTAFSSON M G L, AGARD D A, SEDAT J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[J]. Proc. SPIE, 2000, 3919:141-150. doi: 10.1117/12.384189 [14] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2):82-87. doi: 10.1046/j.1365-2818.2000.00710.x [15] WICKER K. Super-resolution fluorescence microscopy using structured illumination[J]. Super-Resolution Microscopy Techniques in the Neurosciences, 2014:133-165. http://cn.bing.com/academic/profile?id=9540a6588212c54c38334ca1d45d2d89&encoded=0&v=paper_preview&mkt=zh-cn [16] REGO E H, SHAO L. Practical structured illumination microscopy[J]. Advanced Fluorescence Microscopy:Methods and Protocols, 2015:175-192. http://cn.bing.com/academic/profile?id=56c13dd845ae9d1fd85b3472f8125184&encoded=0&v=paper_preview&mkt=zh-cn [17] FROHN J T, KNAPP H F, STEMMER A. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination[J]. Proceedings of the National Academy of Sciences, 2000, 97(13):7232-7236. doi: 10.1073/pnas.130181797 [18] GUSTAFSSON M G L, SHAO L, CARLTON P M, et al.. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12):4957-4970. doi: 10.1529/biophysj.107.120345 [19] HEINTZMANN R, JOVIN T M, CREMER C. Saturated patterned excitation microscopy-a concept for optical resolution improvement[J]. JOSA A, 2002, 19(8):1599-1609. doi: 10.1364/JOSAA.19.001599 [20] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy:wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13081-13086. doi: 10.1073/pnas.0406877102 [21] HIRVONEN L, MANDULA O, WICKER K, et al.. Structured illumination microscopy using photoswitchable fluorescent proteins[J]. Proc. SPIE, 2008, 6861:68610L. doi: 10.1117/12.763021 [22] REGO E H, SHAO L, MACKLIN J J, et al.. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J]. Proceedings of the National Academy of Sciences, 2012, 109(3):E135-E143. doi: 10.1073/pnas.1107547108 [23] SCHERMELLEH L, CARLTON P M, HAASE S, et al.. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881):1332-1336. doi: 10.1126/science.1156947 [24] KNER P, CHHUN B B, GRIFFIS E R, et al.. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5):339-342. doi: 10.1038/nmeth.1324 [25] SHAO L, KNER P, REGO E H, et al.. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature methods, 2011, 8(12):1044. doi: 10.1038/nmeth.1734 [26] LI D, SHAO L, CHEN B C, et al.. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 2015, 349(6251):aab3500. doi: 10.1126/science.aab3500 [27] CHANG B J, CHOU L J, CHANG Y C, et al.. Isotropic image in structured illumination microscopy patterned with a spatial light modulator[J]. Optics Express, 2009, 17(17):14710-14721. doi: 10.1364/OE.17.014710 [28] DAN D, LEI M, YAO B, et al.. DMD-based LED-illumination Super-resolution and optical sectioning microscopy[J]. Scientific Reports, 2013, 3. http://cn.bing.com/academic/profile?id=aed34c513eee106e6e52347ab0ca1b6a&encoded=0&v=paper_preview&mkt=zh-cn [29] LUKEŠ T, KŘÍŽEK P, ŠVINDRYCH Z, et al.. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation[J]. Optics express, 2014, 22(24):29805-29817. doi: 10.1364/OE.22.029805 [30] FÖRSTER R, LU-WALTHER H W, JOST A, et al.. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator[J]. Optics Express, 2014, 22(17):20663-20677. doi: 10.1364/OE.22.020663 [31] LU-WALTHER H W, KIELHORN M, F RSTER R, et al.. fastSIM:a practical implementation of fast structured illumination microscopy[J]. Methods and Applications in Fluorescence, 2015, 3(1):014001. doi: 10.1088/2050-6120/3/1/014001 [32] SONG L, LU-WALTHER H W, F RSTER R, et al.. Fast structured illumination microscopy using rolling shutter cameras[J]. Measurement Science and Technology, 2016, 27(5):055401. doi: 10.1088/0957-0233/27/5/055401 [33] YOUNG L J, STR? HL F, KAMINSKI C F. A guide to structured illumination TIRF microscopy at high speed with multiple colors[J]. Journal of Visualized Experiments:JoVE, 2016(111). http://cn.bing.com/academic/profile?id=fa3d794d3a8262b6e8930707da190dd7&encoded=0&v=paper_preview&mkt=zh-cn [34] 文刚, 李思黾, 杨西斌, 等.基于激光干涉的结构光照明超分辨荧光显微镜系统[J].光学学报, 2017, 37(3):32-42. http://mall.cnki.net/magazine/Article/GXXB201703004.htmWEN G, LI S M, YANG X B, et al.. Super-resolution fluorescence microscopy system by structured illumination based on laser interference[J]. Chinese Journal of Optics, 2017, 37(3):32-42.(in Chinese) http://mall.cnki.net/magazine/Article/GXXB201703004.htm [35] SCHAEFER L H, SCHUSTER D, SCHAFFER J. Structured illumination microscopy:artefact analysis and reduction utilizing a parameter optimization approach[J]. Journal of Microscopy, 2004, 216(2):165-174. doi: 10.1111/j.0022-2720.2004.01411.x [36] SHROFF S A, FIENUP J R, WILLIAMS D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution[J]. JOSA A, 2009, 26(2):413-424. doi: 10.1364/JOSAA.26.000413 [37] SHROFF S A, FIENUP J R, WILLIAMS D R. Lateral superresolution using a posteriori phase shift estimation for a moving object:experimental results[J]. JOSA A, 2010, 27(8):1770-1782. doi: 10.1364/JOSAA.27.001770 [38] O'HOLLERAN K, SHAW M. Polarization effects on contrast in structured illumination microscopy[J]. Optics Letters, 2012, 37(22):4603-4605. doi: 10.1364/OL.37.004603 [39] WICKER K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space[J]. Optics Express, 2013, 21(21):24692-24701. doi: 10.1364/OE.21.024692 [40] WICKER K, MANDULA O, BEST G, et al.. Phase optimisation for structured illumination microscopy[J]. Optics Express, 2013, 21(2):2032-2049. doi: 10.1364/OE.21.002032 [41] WICKER K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space[J]. Optics Express, 2013, 21(21):24692-24701. doi: 10.1364/OE.21.024692 [42] AYUK R, GIOVANNINI H, JOST A, et al.. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm[J]. Optics Letters, 2013, 38(22):4723-4726. doi: 10.1364/OL.38.004723 [43] O'HOLLERAN K, SHAW M. Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy[J]. Biomedical Optics Express, 2014, 5(8):2580-2590. doi: 10.1364/BOE.5.002580 [44] CHU K, MCMILLAN P J, SMITH Z J, et al.. Image reconstruction for structured-illumination microscopy with low signal level[J]. Optics Express, 2014, 22(7):8687-8702. doi: 10.1364/OE.22.008687 [45] CHAKROVA N, HEINTZMANN R, RIEGER B, et al.. Studying different illumination patterns for resolution improvement in fluorescence microscopy[J]. Optics Express, 2015, 23(24):31367-31383. doi: 10.1364/OE.23.031367 [46] KRÍEK P, LUKEŠ T, OVESNY M, et al.. SIMToolbox:a MATLAB toolbox for structured illumination fluorescence microscopy[J]. Bioinformatics, 2015, 32(2):318-320. http://cn.bing.com/academic/profile?id=d6f0b50129974e99b9099014126be939&encoded=0&v=paper_preview&mkt=zh-cn [47] BALL G, DEMMERLE J, KAUFMANN R, et al.. SIMcheck:a toolbox for successful super-resolution structured illumination microscopy[J]. Scientific Reports, 2015, 5. http://cn.bing.com/academic/profile?id=1f183575f5f5701a11b8b4425ec920a3&encoded=0&v=paper_preview&mkt=zh-cn [48] FÖRSTER R, WICKER K, MVLLER W, et al.. Motion artefact detection in structured illumination microscopy for live cell imaging[J]. Optics Express, 2016, 24(19):22121-22134. doi: 10.1364/OE.24.022121 [49] ZHOU X, LEI M, DAN D, et al.. Image recombination transform algorithm for superresolution structured illumination microscopy[J]. Journal of Biomedical Optics, 2016, 21(9):096009-096009. doi: 10.1117/1.JBO.21.9.096009 [50] CHAKROVA N, RIEGER B, STALLINGA S. Deconvolution methods for structured illumination microscopy[J]. JOSA A, 2016, 33(7):B12-B20. doi: 10.1364/JOSAA.33.000B12 [51] PEREZ V, CHANG B J, STELZER E H K. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution[J]. Scientific Reports, 2016, 6:37149. doi: 10.1038/srep37149 [52] YANG Q, CAO L, ZHANG H, et al.. Method of lateral image reconstruction in structured illumination microscopy with super resolution[J]. Journal of Innovative Optical Health Sciences, 2016, 9(3):1630002. doi: 10.1142/S1793545816300020 [53] LAL A, SHAN C, XI P. Structured illumination microscopy image reconstruction algorithm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(4):50-63. doi: 10.1109/JSTQE.2016.2521542 [54] MVLLER M, MÖNKEMÖLLER V, HENNIG S, et al.. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ[J]. Nature Communications, 2016, 7. http://cn.bing.com/academic/profile?id=94f0b222305508885bd5b06dd8a7c8e4&encoded=0&v=paper_preview&mkt=zh-cn [55] ZHOU X, DAN D, QIAN J, et al.. Super-resolution reconstruction theory in structured illumination microscopy[J]. Chinese Journal of Optics, 2017, 37(3):10-21.(in Chinese) http://cn.bing.com/academic/profile?id=5a55d389721d98c9b9edc18fbe7ac4a2&encoded=0&v=paper_preview&mkt=zh-cn [56] 赵天宇, 周兴, 但旦, 等.结构光照明显微中的偏振控制[J].物理学报, 2017, 66(14):295-305. http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201501003.htmZHAO T Y, ZHOU X, DAN D, et al.. Polarization control methods in structured illumination microscopy[J]. Chinese Journal of Physics, 2017, 66(14):295-305.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201501003.htm [57] DEMMERLE J, INNOCENT C, NORTH A J, et al.. Strategic and practical guidelines for successful structured illumination microscopy[J]. Nat. Protoc, 2017. http://cn.bing.com/academic/profile?id=a01479c4c15054cf69dd9935ec5bbcbd&encoded=0&v=paper_preview&mkt=zh-cn [58] KRAUS F, MIRON E, DEMMERLE J, et al.. Quantitative 3D structured illumination microscopy of nuclear structures[J]. Nature Protocols, 2017, 12(5):1011-1028. doi: 10.1038/nprot.2017.020 [59] STRÖHL F, KAMINSKI C F. Frontiers in structured illumination microscopy[J]. Optica, 2016, 3(6):667-677. doi: 10.1364/OPTICA.3.000667 [60] MVLLER C B, ENDERLEIN J. Image scanning microscopy[J]. Physical Review Letters, 2010, 104(19):198101. doi: 10.1103/PhysRevLett.104.198101 [61] YORK A G, PAREKH S H, DALLENOGARE D, et al.. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 2012, 9(7):749-754. doi: 10.1038/nmeth.2025 [62] SCHULZ O, PIEPER C, CLEVER M, et al.. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy[J]. Proceedings of the National Academy of Sciences, 2013, 110(52):21000-21005. doi: 10.1073/pnas.1315858110 [63] SHEPPARD C J R, MEHTA S B, HEINTZMANN R. Superresolution by image scanning microscopy using pixel reassignment[J]. Optics Letters, 2013, 38(15):2889-2892. doi: 10.1364/OL.38.002889 [64] DE LUCA G M R, BREEDIJK R M P, BRANDT R A J, et al.. Re-scan confocal microscopy:scanning twice for better resolution[J]. Biomedical Optics Express, 2013, 4(11):2644-2656. doi: 10.1364/BOE.4.002644 [65] ROTH S, SHEPPARD C J R, WICKER K, et al.. Optical photon reassignment microscopy(OPRA)[J]. Optical Nanoscopy, 2013, 2(1):5. doi: 10.1186/2192-2853-2-5 [66] YORK A G, CHANDRIS P, DALLENOGARE D, et al.. Instant super-resolution imaging in live cells and embryos via analog image processing[J]. Nature Methods, 2013, 10(11):1122-1126. doi: 10.1038/nmeth.2687 [67] INGARAMO M, YORK A G, WAWRZUSIN P, et al.. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue[J]. Proceedings of the National Academy of Sciences, 2014, 111(14):5254-5259. doi: 10.1073/pnas.1314447111 [68] WINTER P W, YORK A G, DALLENOGARE D, et al.. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples[J]. Optica, 2014, 1(3):181-191. doi: 10.1364/OPTICA.1.000181 [69] WEISSHART K. The basic principle of airyscanning[J]. Zeiss Technology Note, 2014:22. http://forum.sci.ccny.cuny.edu/cores/microscopy-imaging/confocal-microscopy/documents/Basic-Principle-Airyscan.pdf [70] STRÖHL F, KAMINSKI C F. A joint Richardson-Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data[J]. Methods and Applications in Fluorescence, 2015, 3(1):014002. doi: 10.1088/2050-6120/3/1/014002 [71] AZUMA T, KEI T. Super-resolution spinning-disk confocal microscopy using optical photon reassignment[J]. Optics Express, 2015, 23(11):15003-15011. doi: 10.1364/OE.23.015003 [72] CURD A, CLEASBY A, MAKOWSKA K, et al.. Construction of an instant structured illumination microscope[J]. Methods, 2015, 88:37-47. doi: 10.1016/j.ymeth.2015.07.012 [73] MCGREGOR J E, MITCHELL C A, HARTELL N A. Post-processing strategies in image scanning microscopy[J]. Methods, 2015, 88:28-36. doi: 10.1016/j.ymeth.2015.05.002 [74] SIVAGURU M, URBAN M A, FRIED G, et al.. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen[J]. Microscopy Research and Technique, 2016. http://cn.bing.com/academic/profile?id=84817ebfbfa24dc31391778351cd6f06&encoded=0&v=paper_preview&mkt=zh-cn [75] ROTH S, HEINTZMANN R. Optical photon reassignment with increased axial resolution by structured illumination[J]. Methods and Applications in Fluorescence, 2016, 4(4):045005. doi: 10.1088/2050-6120/4/4/045005 [76] SHEPPARD C J R, ROTH S, HEINTZMANN R, et al.. Interpretation of the optical transfer function:Significance for image scanning microscopy[J]. Optics Express, 2016, 24(24):27280-27287. doi: 10.1364/OE.24.027280 [77] DE LUCA G M R, DESCLOS E, BREEDIJK R M P, et al.. Configurations of the Re-scan Confocal Microscope(RCM) for biomedical applications[J]. Journal of Microscopy, 2017, 266(2):166-177. doi: 10.1111/jmi.2017.266.issue-2 [78] CHEN L C, ZHENG W, et al. . Multicolor re-scan super-resolution imaging of live cells(unpublished). [79] ZHENG W, WU Y, WINTER P, et al.. Adaptive optics improves multiphoton super-resolution imaging[J]. Nature Methods, 2017, 14(9):869-872. doi: 10.1038/nmeth.4337