留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型过渡金属硫化物在超快激光中的应用

孙俊杰 陈飞 何洋 丛春晓 曲家沂 季艳慧 鲍赫

孙俊杰, 陈飞, 何洋, 丛春晓, 曲家沂, 季艳慧, 鲍赫. 新型过渡金属硫化物在超快激光中的应用[J]. 中国光学(中英文), 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241
引用本文: 孙俊杰, 陈飞, 何洋, 丛春晓, 曲家沂, 季艳慧, 鲍赫. 新型过渡金属硫化物在超快激光中的应用[J]. 中国光学(中英文), 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241
SUN Jun-jie, CHEN Fei, HE Yang, CONG Chun-xiao, QU Jia-yi, JI Yan-hui, BAO He. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241
Citation: SUN Jun-jie, CHEN Fei, HE Yang, CONG Chun-xiao, QU Jia-yi, JI Yan-hui, BAO He. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241

新型过渡金属硫化物在超快激光中的应用

基金项目: 国家重点研发计划资助项目(No.2016YFB0500100;No.2018YFE0203203);国家自然科学基金面上项目(No. 61975203);中科院青年创新促进会(No. 2017259);民用航天预研项目(No. D040101)
详细信息
    作者简介:

    孙俊杰(1994—),女,吉林长春人,硕士,研究实习员,2015年于武汉大学获得学士学位,2017年于国防科技大学获得硕士学位,主要从事新型激光技术方面的研究。E-mail:15143115236@163.com

    陈 飞(1982—),男,河南南阳人,博士,研究员,博士生导师,2005年于长春理工大学获得学士学位,2007年于哈尔滨工业大学获得硕士学位,2011年于哈尔滨工业大学获得博士学位,主要从事激光技术及应用方面的研究。E-mail:feichenny@126.com

  • 中图分类号: TN248

Application of emerging transition metal dichalcogenides in ultrafast lasers

Funds: Supported by National Key R&D Program of China (No. 2016YFB0500100; No. 2018YFE0203203); National Natural Science Foundation of China (No. 61975203); Youth Innovation Promotion Association of CAS (No. 2017259); Civil Aerospace Pre-research Project (No. D040101)
More Information
  • 摘要: 超快激光技术是目前激光乃至物理学和信息科学领域最活跃的研究前沿之一,在工业加工、生物医学和激光雷达等领域具有广泛应用。二维材料具有独特的物理结构及优异的光电特性,作为可饱和吸收体应用于超快激光器时,具备工作波段宽、调制深度可控和恢复时间快等优势。其中,过渡金属硫化物因具有带隙连续可调等特点,已成为二维材料研究领域的重点。本文从过渡金属硫化物的特性出发,介绍了可饱和吸收器件的制作方法,综述了基于新型过渡金属硫化物的超快激光器的研究进展,并对其发展趋势进行了展望。

     

  • 图 1  典型TMD图像。(a)光学图像;(b)扫描电镜图像;(c)原子力显微镜图像;(d、e)低倍、高倍透射电镜图像[40]

    Figure 1.  Typical images of TMD. (a) Optical image. (b) SEM image. (c) AFM image. (d, e) Low- and high-magnification TEM images

    图 2  TMD可饱和吸收体转移示意图

    Figure 2.  Schematic diagram of transfer for TMD saturable absorber

    图 3  基于ReS2可饱和吸收体的固体激光器装置图

    Figure 3.  Solid-state laser setup based on ReS2 saturable absorber

    图 4  基于ReS2可饱和吸收体的光纤激光器装置示意图

    Figure 4.  Schematic of fiber laser setup based on ReS2 saturable absorber

    表  1  基于新型TMD可饱和吸收体的超快固体激光器

    Table  1.   Ultrafast solid-state lasers with emerging TMD saturable absorbers

    TMD饱和能量调制深度调制方式增益介质中心波长重复频率脉冲宽度单脉冲能量/平均功率参考
    文献
    ReS222.6 μJ/cm29.7%调QEr:YSGG2.8 μm126 kHz324 ns104 mW[69]
    58.2 μJ/cm2 21.5 μJ/cm2 2.7 μJ/cm23%
    5.2%
    2.9%
    调Q/锁模Pr:YLF、
    Nd:YAG、
    Tm:YAP
    调Q:0.64 μm、1.064 μm、1.991 μm,锁模:
    1.06 μm
    调Q:520 kHz、644 kHz、67.7 kHz,锁模:
    50.7 MHz
    调Q:160 ns、139 ns、415 ns,锁模:323 fs调Q:0.625 W、1.34 W、8.72 W,锁模:350 mW
    11.89 GW/cm248%调QNd:YAG0.95 μm/
    1.06 μm
    165 kHz834 ns81 mW[70]
    23.5 μJ/cm210.2%调QHo,Pr:LiLuF42.95 μm91.5 kHz676 ns1.13 μJ[44]
    15.6 μJ/cm215%调QNd:YAG1.3 μm214 kHz403 ns0.42 μJ[71]
    PtSe217.1 μJ/cm212.6%锁模Nd:LuVO41066 nm61.3 MHz15.8 ps180 mW[72]
    3.2 μJ/cm26.6%调QTm:YAP1 987 nm58 kHz244 ns24.3 μJ[73]
    0.47 GW/cm21.9%调Q锁模Nd:YAG1064 nm8.8 GHz27 ps127 mW[74]
    ReSe2调QTm:YLF/Tm:Y2O31 900 nm/
    2050 nm
    54 kHz/
    106 kHz
    527.9 ns/
    727 ns
    862 mW/
    1.04 W
    [75]
    12.8 GW/cm22.9%调QNd:Y3Al5O121.06 μm274 MHz1.08 μs2.5 μJ[76]
    14.5 μJ/cm27.5%调QEr:YAP2.73 μm/
    2.8 μm
    244.6 kHz202.8 ns526 mW[77]
    12.8 GW/cm22.9%锁模固体波导1064 nm6.5 GHz29 ps250 mW[78]
    6.37 MW/cm21.89%调QNd:YVO41064.4 nm84.16 kHz682 ns125 mW[79]
    4.3 μJ/cm27.3%调QTm:YAP2 μm89.4 kHz925.8 ns17.6 μJ[46]
    MoTe20.14 mJ/cm222%调QHo,Pr:LiLuF42.95 μm76.46 kHz670 ns0.95 μJ[80]
    1.71 MW/cm2调QYb:LaCa4O(BO3)31.03~1.04 μm357 kHz103 ns6.6 μJ[81]
    18 MW/cm24%调QTm:CaYAlO41 929 nm70.9 kHz0.69 μs10.58 μJ[82]
    6.87 mJ/cm21.3%调QEr:YAG1645 nm41.59 kHz1.048 μs27.4 μJ[83]
    2.26 μJ/cm26.0%调QTm:YAP2 μm144 kHz380 ns8.4 μJ[84]
    1.71 MW/cm20.9%调QYb:YCOB1.03 μm704 kHz52 ns2.25 μJ[85]
    1.71 MW/cm20.9%调QYb:KLu(WO4)21030.6 nm2.18 MHz36 ns1.3 μJ[86]
    WTe25.1 μJ/cm27.2%调QTm:YAP1 938 nm78 kHz368 ns4.8 μJ[87]
    1.97 mJ/cm220.9%调QHo,Pr:LiLuF42 954.7 nm92 kHz366 ns1.4 μJ[88]
    TiS23.37 mJ/cm28%调QEr:YAG1645 nm38 kHz1.2 μs37.4 μJ[89]
    下载: 导出CSV

    表  2  基于新型TMD可饱和吸收体的超快光纤激光器

    Table  2.   Ultrafast fiber lasers with emerging TMD saturable absorbers

    TMD饱和能量调制深度调制方式光纤掺杂中心波长重复频率脉冲宽度单脉冲能量/平均功率参考
    文献
    ReS227 μJ/cm21%锁模Er1564 nm3.43 MHz1.25 ps[91]
    74 MW /cm20.12%调Q/锁模Er1558.6 nm12.6~19 kHz/
    5.48 MHz
    23~5.49 μs/1.6 ps22~62.8 μJ[92]
    锁模Er1.5 μm1.896 MHz12 mW[93]
    8.4 MW/cm244%调QYb1047 nm134 kHz1.56 μs13.02 nJ[94]
    27.5 μJ/cm26.9%锁模Er1573.6 nm/
    1591.1 nm/
    1592.6 nm
    13.39 MHz[95]
    PtSe20.346 GW/cm226%锁模Yb1064.47 nm4.08 MHz470 ps2.31 nJ[96]
    9.48 MW/cm26.9%锁模Er1550 nm8.24 MHz861 fs78.52 nJ[45]
    0.34~1.23 GW/cm21.11%~4.9%调Q/锁模Er1560 nm锁模:23.3 MHz锁模:1.02 ps调Q:143.2 nJ
    锁模:0.53 nJ
    [97]
    ReSe2调QYb1.06 μm17.89~39.86 kHz2.27 μs30.4 nJ[98]
    3.9%锁模Er1560 nm14.97 MHz862 fs0.5 mW[99]
    7%调QEr1566 nm16.64 kHz4.98 μs36 nJ[100]
    MoTe23.46 MW/cm248.85%锁模Er1559 nm1.8 MHz2.46 ps0.11 mW[101]
    0.969 MW/cm226.97%锁模Er1561 nm96.323 MHz111.9 fs23.4 mW[102]
    26.45 MW/cm217.47%调QEr1559 nm148~228 kHz677 ns109 nJ[103]
    8.3 MW /cm25.7%锁模Tm1 930 nm14.353 MHz952 fs2.56 nJ[47]
    9.6 MW/cm2@
    1.5 μm、12.3 MW/cm2@2 μm
    25.5%@1.5 μm、22.1%@
    2 μm
    锁模Er/Tm1.5 μm/2 μm25.601 MHz/
    15.37 MHz
    229 fs/1.3 ps2.14 nJ/13.8 nJ[104]
    WTe27.6 MW/cm231%锁模Tm1915.5 nm18.72 MHz1.25 ps39.9 mW[48]
    2.18%调QYb1044 nm19~79 kHz1 μs28.3 nJ[105]
    0.515 MW/cm231.06%调QEr1531 nm144.7~240 kHz583 ns58.625 nJ[106]
    TiS28.3%锁模/调QEr1563.3 nm/
    1560.2 nm
    22.7 MHz/
    33.387 kHz
    1.25 ps/4.01 μs25.3 pJ/9.5 nJ[107]
    772.2 GW /cm2锁模Er1550 nm5.7 MHz618 fs0.28~1.2 mW[49]
    下载: 导出CSV
  • [1] SIBBETT W, LAGATSKY A A, BROWN C T A. The development and application of femtosecond laser systems[J]. Optics Express, 2012, 20(7): 6989-7001. doi: 10.1364/OE.20.006989
    [2] YE J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10): 1153-1155. doi: 10.1364/OL.29.001153
    [3] 岱钦, 毛有明, 吴凯旋, 等. 脉冲激光测距中高速精密时间间隔测量研究[J]. 液晶与显示,2015,30(1):83-88. doi: 10.3788/YJYXS20153001.0083

    DAI Q, MAO Y M, WU K X, et al. High speed and high precision time-interval measurement system in pulsed laser ranging[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1): 83-88. (in Chinese) doi: 10.3788/YJYXS20153001.0083
    [4] 高慧, 赵佳宇, 刘伟伟. 超快激光成丝现象的多丝控制[J]. 光学 精密工程,2013,21(3):698-607.

    GAO H, ZHAO J Y, LIU W W. Control of multiple filamentation induced by ultrafast laser pulse[J]. Optics and Precision Engineering, 2013, 21(3): 698-607. (in Chinese)
    [5] TRÄGER F. Handbook of Lasers and Optics[M]. 2nd ed. New York: Springer, 2012.
    [6] 姜可, 谢冀江, 杨贵龙, 等. GaSe晶体的双光子吸收对太赫兹输出的影响[J]. 发光学报,2015,36(3):361-365. doi: 10.3788/fgxb20153603.0361

    JIANG K, XIE J J, YANG G L, et al. Two-photon absorption attenuated THz generation in GaSe[J]. Chinese Journal of Luminescence, 2015, 36(3): 361-365. (in Chinese) doi: 10.3788/fgxb20153603.0361
    [7] TANTER M, TOUBOUL D, GENNISSON J L, et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J]. IEEE Transactions on Medical Imaging, 2009, 28(12): 1881-1893. doi: 10.1109/TMI.2009.2021471
    [8] CHOU S Y, KEIMEL C, GU J. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837. doi: 10.1038/nature00792
    [9] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938
    [10] 李景照, 陈振强, 朱思祁. 基于Yb: YAG/Cr4+: YAG/YAG键合晶体的被动调Q激光器[J]. 光学 精密工程,2018,26(1):55-61. doi: 10.3788/OPE.20182601.0055

    LI J ZH, CHEN ZH Q, ZHU S Q. Passively Q-switched laser with a Yb: YAG/Cr4+: YAG/YAG composite crystal[J]. Optics and Precision Engineering, 2018, 26(1): 55-61. (in Chinese) doi: 10.3788/OPE.20182601.0055
    [11] 程秀凤, 陈丽娟, 韩树娟, 等. LD端面泵浦Nd: LiGd(MoO4)2晶体的主动调Q脉冲激光特性[J]. 光学 精密工程,2013,21(4):836-840.

    CHENG X F, CHEN L J, HAN SH J, et al. Actively Q-switched pulse laser from LD end-pumped Nd: LiGd(MoO4)2 crystals[J]. Optics and Precision Engineering, 2013, 21(4): 836-840. (in Chinese)
    [12] 王加贤, 庄鑫巍. 基于半导体可饱和吸收镜实现闪光灯抽运Nd: YAG激光器的被动调Q与锁模[J]. 光学 精密工程,2006,14(4):584-588.

    WANG J X, ZHUANG X W. Passive Q-switching and mode-locking in a flashlamp-pumped Nd: YAG laser with semiconductor saturable absorption mirror[J]. Optics and Precision Engineering, 2006, 14(4): 584-588. (in Chinese)
    [13] 余锦, 刘伟仁. 1.0 μm掺钕介质全固化调Q脉冲激光技术[J]. 光学 精密工程,2000,8(2):297-302.

    YU J, LIU W R. All-solid-state Q-switched lasers with Nd3+-doped crystals oscillating at 1.0 μm[J]. Optics and Precision Engineering, 2000, 8(2): 297-302. (in Chinese)
    [14] 王蓟, 王国政, 刘洋, 等. 全光纤声光调Q铒镱共掺双包层光纤激光器[J]. 发光学报,2008,29(6):1018-1022.

    WANG J, WANG G ZH, LIU Y, et al. All-fiber acousto-optic Q-switched Er3+/Yb3+ co-doped double-cladding fiber lasers[J]. Chinese Journal of Luminescence, 2008, 29(6): 1018-1022. (in Chinese)
    [15] 王国立, 郭亨群, 苏培林, 等. nc-Si/SiNx超晶格薄膜实现Nd: YAG激光器调Q和锁模[J]. 发光学报,2008,29(5):905-909.

    WANG G L, GUO H Q, SU P L, et al. Passive Q-switching and mode locking of pulsed Nd: YAG laser with nc-Si/SiNx multilayer[J]. Chinese Journal of Luminescence, 2008, 29(5): 905-909. (in Chinese)
    [16] 张伶莉, 孙秀冬, 刘永军, 等. 具有外部谐振腔的胆甾相液晶激光器的研究[J]. 液晶与显示,2013,28(5):679-682. doi: 10.3788/YJYXS20132805.0679

    ZHANG L L, SUN X D, LIU Y J, et al. Cholesteric liquid crystals laser with external cavity[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(5): 679-682. (in Chinese) doi: 10.3788/YJYXS20132805.0679
    [17] 苏晶, 刘玉荣, 莫昌文, 等. ZnO基薄膜晶体管有源层制备技术的研究进展[J]. 液晶与显示,2013,28(3):315-322. doi: 10.3788/YJYXS20132803.0315

    SU J, LIU Y R, MO CH W, et al. Research development on preparation technologies of active layer preparation of ZnO-based thin film[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 315-322. (in Chinese) doi: 10.3788/YJYXS20132803.0315
    [18] ZIRNGIBL M, STULZ L W, STONE J, et al. 1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser[J]. Electronics Letters, 1991, 27(19): 1734-1735. doi: 10.1049/el:19911079
    [19] WEI CH, SHI H X, LUO H Y, et al. 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser[J]. Optics Express, 2017, 25(16): 19170-19178. doi: 10.1364/OE.25.019170
    [20] TANG P H, QIN ZH P, LIU J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. doi: 10.1364/OL.40.004855
    [21] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. doi: 10.1073/pnas.0502848102
    [22] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193
    [23] CHEN Y, JIANG G B, CHEN SH Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833. doi: 10.1364/OE.23.012823
    [24] JIANG X T, LIU SH X, LIANG W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH)[J]. Laser &Photonics Review, 2018, 12(2): 1700229.
    [25] WANG SH X, YU H H, ZHANG H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi: 10.1002/adma.201306322
    [26] WANG M X, ZHANG F, WANG ZH P, et al. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber[J]. Optics Express, 2018, 26(4): 4085-4095. doi: 10.1364/OE.26.004085
    [27] GUO J, HUANG D ZH, ZHANG Y, et al.. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics[J]. Laser &Photonics Reviews, 2019, 13: 1900123.
    [28] MOHANRAJ J, VELMURUGAN V, SIVABALAN S. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology[J]. Optical Materials, 2016, 60: 601-617. doi: 10.1016/j.optmat.2016.09.007
    [29] TIU Z C, OOI S I, GUO J, et al. Review: application of transition metal dichalcogenide in pulsed fiber laser system[J]. Materials Research Express, 2019, 6(8): 082004. doi: 10.1088/2053-1591/ab2257
    [30] LI H, LU G, WANG Y L, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9(11): 1974-1981. doi: 10.1002/smll.201202919
    [31] COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. doi: 10.1126/science.1194975
    [32] MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498. doi: 10.1038/nnano.2012.96
    [33] BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709. doi: 10.1021/nn203879f
    [34] LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798
    [35] NAJMAEI S, LIU ZH, ZHOU W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials, 2013, 12(8): 754-759. doi: 10.1038/nmat3673
    [36] REN L, QI X, LIU Y D, et al. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J]. Journal of Materials Chemistry, 2012, 22(11): 4921-4926. doi: 10.1039/c2jm15973b
    [37] PRADO G, FOURNÈS L, DELMAS C. On the LixNi0.70Fe0.15Co0.15O2 system: an X-ray diffraction and mössbauer study[J]. Journal of Solid State Chemistry, 2001, 159(1): 103-112. doi: 10.1006/jssc.2001.9137
    [38] RAMAKRISHNA MATTE H S S, GOMATHI A, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062. doi: 10.1002/anie.201000009
    [39] FOMINSKI V Y, NEVOLIN V N, ROMANOV R I, et al. Ion-assisted deposition of MoSx films from laser-generated plume under pulsed electric field[J]. Journal of Applied Physics, 2001, 89(2): 1449-1457. doi: 10.1063/1.1330558
    [40] CONG CH X, SHANG J ZH, WU X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136. doi: 10.1002/adom.201300428
    [41] REICHARDT S, WIRTZ L. Raman Spectroscopy of Graphene[M]. BINDER R. Optical Properties of Graphene. Singapore: World Scientific, 2017.
    [42] DRESSELHAUS M S, JORIO A, SAITO R. Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy[J]. Annual Review of Condensed Matter Physics, 2010, 1: 89-108. doi: 10.1146/annurev-conmatphys-070909-103919
    [43] DRESSELHAUS M S, JORIO A, HOFMAN M, et al. Perspectives on carbon nanotubes and graphene raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758. doi: 10.1021/nl904286r
    [44] ZUO CH H, CAO Y P, YANG Q, et al. Passively Q-switched 295-μm bulk laser based on rhenium disulfide as saturable absorber[J]. IEEE Photonics Technology Letters, 2019, 31(3): 206-209. doi: 10.1109/LPT.2018.2886784
    [45] HUANG B, DU L, YI Q, et al. Bulk-structured PtSe2 for femtosecond fiber laser mode-locking[J]. Optics Express, 2019, 27(3): 2604-2611. doi: 10.1364/OE.27.002604
    [46] YAO Y P, LI X W, SONG R G, et al. The energy band structure analysis and 2 μm Q-switched laser application of layered rhenium diselenide[J]. RSC Advances, 2019, 9(25): 14417-14421. doi: 10.1039/C9RA02311A
    [47] WANG J T, CHEN H, JIANG Z K, et al. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride[J]. Optics Letters, 2018, 43(9): 1998-2001. doi: 10.1364/OL.43.001998
    [48] WANG J T, JIANG Z K, CHEN H, et al. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser[J]. Optics Letters, 2017, 42(23): 5010-5013. doi: 10.1364/OL.42.005010
    [49] TIAN X L, WEI R F, LIU M, et al. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser[J]. Nanoscale, 2018, 10(20): 9608-9615. doi: 10.1039/C8NR01573B
    [50] WU K, CHEN B H, ZHANG X Y, et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited)[J]. Optics Communications, 2018, 406: 214-229. doi: 10.1016/j.optcom.2017.02.024
    [51] TIAN Z, WU K, KONG L CH, et al. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 2015, 12(6): 065104. doi: 10.1088/1612-2011/12/6/065104
    [52] WEI CH, LUO H Y, ZHANG H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108. doi: 10.1088/1612-2011/13/10/105108
    [53] HOU J, ZHAO G, WU Y ZH, et al. Femtosecond solid-state laser based on tungsten disulfide saturable absorber[J]. Optics Express, 2015, 23(21): 27292-27298. doi: 10.1364/OE.23.027292
    [54] CHEN B H, ZHANG X Y, WU K, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737. doi: 10.1364/OE.23.026723
    [55] WU K, ZHANG X Y, WANG J, et al. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J]. Optics Express, 2015, 23(9): 11453-11461. doi: 10.1364/OE.23.011453
    [56] WU K, ZHANG X Y, WANG J, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber[J]. Optics Letters, 2015, 40(7): 1374-1377. doi: 10.1364/OL.40.001374
    [57] WANG Q K, CHEN Y, MIAO L L, et al. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer[J]. Optics Express, 2015, 23(6): 7681-7693. doi: 10.1364/OE.23.007681
    [58] XING CH Y, XIE ZH J, LIANG ZH M, et al. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics[J]. Advanced Optical Materials, 2017, 5(24): 1700884. doi: 10.1002/adom.201700884
    [59] YAN P G, LIN R Y, CHEN H, et al. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(3): 264-267. doi: 10.1109/LPT.2014.2361915
    [60] YAN P G, LIU A J, CHEN Y SH, et al. Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber[J]. Scientific Reports, 2015, 5(1): 12587. doi: 10.1038/srep12587
    [61] WANG K P, WANG J, FAN J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267. doi: 10.1021/nn403886t
    [62] XU B, CHENG Y J, WANG Y, et al. Passively Q-switched Nd: YAlO3 nanosecond laser using MoS2 as saturable absorber[J]. Optics Express, 2014, 22(23): 28934-28940. doi: 10.1364/OE.22.028934
    [63] TONGAY S, SAHIN H, KO C, et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling[J]. Nature Communications, 2014, 5(1): 3252. doi: 10.1038/ncomms4252
    [64] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. doi: 10.1038/nchem.1589
    [65] XU M SH, LIANG T, SHI M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. doi: 10.1021/cr300263a
    [66] LIU E F, FU Y J, WANG Y J, et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors[J]. Nature Communications, 2015, 6(1): 6991. doi: 10.1038/ncomms7991
    [67] TIAN H, CHIN M L, NAJMAEI S, et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J]. Nano Research, 2016, 9(6): 1543-1560. doi: 10.1007/s12274-016-1034-9
    [68] ZHANG E Z, JIN Y B, YUAN X, et al. ReS2-based field-effect transistors and photodetectors[J]. Advanced Functional Materials, 2015, 25(26): 4076-4082. doi: 10.1002/adfm.201500969
    [69] SU X C, ZHANG B T, WANG Y R, et al. Broadband rhenium disulfide optical modulator for solid-state lasers[J]. Photonics Research, 2018, 6(6): 498-505. doi: 10.1364/PRJ.6.000498
    [70] HAN SH, ZHOU SH SH, LIU X L, et al. Rhenium disulfide-based passively Q-switched dual-wavelength laser at 0.95 μm and 1.06 μm in Nd: YAG[J]. Laser Physics Letters, 2018, 15(8): 085804. doi: 10.1088/1612-202X/aac983
    [71] LIN M X, PENG Q Q, HOU W, et al. 1.3 μm Q-switched solid-state laser based on few-layer ReS2 saturable absorber[J]. Optics &Laser Technology, 2019, 109: 90-93.
    [72] TAO L L, HUANG X W, HE J SH, et al. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd: LuVO4 laser[J]. Photonics Research, 2018, 6(7): 750-755. doi: 10.1364/PRJ.6.000750
    [73] YAN B ZH, ZHANG B T, NIE H K, et al. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers[J]. Optics Express, 2018, 26(24): 31657-31663. doi: 10.1364/OE.26.031657
    [74] LI Z Q, LI R, PANG CH, et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber[J]. Optics Express, 2019, 27(6): 8727-8737. doi: 10.1364/OE.27.008727
    [75] WANG SH Q, HUANG H T, LIU X, et al. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers[J]. Optical Materials, 2019, 88: 630-634. doi: 10.1016/j.optmat.2018.12.042
    [76] XUE Y CH, LI L, ZHANG B, et al. ReSe2 passively Q-switched Nd: Y3Al5 O12 laser with near repetition rate limit of microsecond pulse output[J]. Optics Communications, 2019, 455: 165-170.
    [77] YAO Y P, CUI N, WANG Q G, et al. Highly efficient continuous-wave and ReSe2 Q-switched ~3 μm dual-wavelength Er: YAP crystal lasers[J]. Optics Letters, 2019, 44(11): 2839-2842. doi: 10.1364/OL.44.002839
    [78] LI Z Q, DONG N N, ZHANG Y X, et al. Invited Article: mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J]. APL Photonics, 2018, 3(8): 080802. doi: 10.1063/1.5032243
    [79] LI CH, LENG Y X, HUO J J. Diode-pumped solid-state Q-switched laser with rhenium diselenide as saturable absorber[J]. Applied Sciences, 2018, 8(10): 1753. doi: 10.3390/app8101753
    [80] YAN ZH Y, LI T, ZHAO SH ZH, et al. MoTe2 saturable absorber for passively Q-switched Ho, Pr: LiLuF4 laser at ~3 μm[J]. Optics and Laser Technology, 2018, 100: 261-264. doi: 10.1016/j.optlastec.2017.10.012
    [81] LI Y H, XU Y F, XU G Y, et al. Performance of an Yb: LaCa4O(BO3)3 crystal laser at 1.03~1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Physics &Technology, 2019, 99: 167-171.
    [82] ZHANG Y ZH, WANG J W, GUAN X F, et al. MoTe2-based broadband wavelength tunable eye-safe pulsed laser source at 1.9 μm[J]. IEEE Photonics Technology Letters, 2018, 30(21): 1890-1893. doi: 10.1109/LPT.2018.2871467
    [83] LIANG Y Y, ZHAO J, QIAO W CH, et al. Passively Q-switched Er: YAG laser at 1645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber[J]. Laser Physics Letters, 2018, 15(9): 095801. doi: 10.1088/1612-202X/aacfae
    [84] YAN B ZH, ZHANG B T, NIE H K, et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber[J]. Optics Express, 2018, 26(14): 18505-18512. doi: 10.1364/OE.26.018505
    [85] MA Y J, TIAN K, DOU X D, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb: YCOB microchip laser[J]. Optics Express, 2018, 26(19): 25147-25155. doi: 10.1364/OE.26.025147
    [86] TIAN K, LI Y H, YANG J N, et al. Passively Q-switched Yb: KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Applied Physics B, 2019, 125(2): 24. doi: 10.1007/s00340-019-7135-x
    [87] CHEN L J, LI X, ZHANG H K, et al. Passively Q-switched 1.989 μm all-solid-state laser based on a WTe2 saturable absorber[J]. Applied Optics, 2018, 57(35): 10239-10242. doi: 10.1364/AO.57.010239
    [88] YAN ZH Y, LI T, ZHAO J, et al. Tungsten ditelluride for a nanosecond Ho, Pr: LiLuF4 laser at 2.95 μm[J]. Laser Physics Letters, 2018, 15(4): 045801. doi: 10.1088/1612-202X/aaa94b
    [89] LI G Q, WU CH, YAN ZH Y, et al. TiS2 as a novel saturable absorber for a 1645 nm passively Q-switched laser[J]. Laser Physics, 2019, 29(5): 055801. doi: 10.1088/1555-6611/ab0d13
    [90] WOODWARD R I, KELLEHER E J R, HOWE R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer Molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113-31122. doi: 10.1364/OE.22.031113
    [91] CUI Y D, LU F F, LIU X M. Nonlinear saturable and polarization-induced absorption of rhenium disulfide[J]. Scientific Reports, 2017, 7(1): 40080. doi: 10.1038/srep40080
    [92] MAO D, CUI X Q, GAN X T, et al. Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1100406.
    [93] LU F F. Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber[J]. Modern Physics Letters B, 2017, 31(18): 1750206. doi: 10.1142/S0217984917502062
    [94] ZHAO R W, LI G R, ZHANG B T, et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J]. Optics Express, 2018, 26(5): 5819-5826. doi: 10.1364/OE.26.005819
    [95] LU B L, WEN Z R, HUANG K X, et al. Passively Q-switched Yb3+-doped fiber laser with ReS2 Saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1600104.
    [96] YUAN J, MU H R, LI L, et al. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers[J]. ACS Applied Materials &Interfaces, 2018, 10(25): 21534-21540.
    [97] ZHANG K, FENG M, REN Y Y, et al. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber[J]. Photonics Research, 2018, 6(9): 893-899. doi: 10.1364/PRJ.6.000893
    [98] LI Y H, LOU Y J, HE J S, et al. Q-switched ytterbium fiber laser based on rhenium diselenide as a saturable absorber[J]. Journal of Physics D:Applied Physics, 2019, 52(46): 465101. doi: 10.1088/1361-6463/ab3883
    [99] LEE J, LEE K, KWON S, et al. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J]. Photonics Research, 2019, 7(9): 984-993. doi: 10.1364/PRJ.7.000984
    [100] DU L, JIANG G B, MIAO L L, et al. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator[J]. Optical Materials Express, 2018, 8(4): 926-935. doi: 10.1364/OME.8.000926
    [101] WANG G M. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber[J]. Optics &Laser Technology, 2017, 96: 307-312.
    [102] LIU M L, LIU W J, WEI ZH Y. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser[J]. Journal of Lightwave Technology, 2019, 37(13): 3100-3105. doi: 10.1109/JLT.2019.2910892
    [103] LIU M L, LIU W J, YAN P G, et al. High-power MoTe2-based passively Q-switched erbium-doped fiber laser[J]. Chinese Optics Letters, 2018, 16(2): 020007. doi: 10.3788/COL201816.020007
    [104] WANG J T, JIANG Z K, CHEN H, et al. High energy soliton pulse generation by a magnetron -sputtering- deposition -grown MoTe2 saturable absorber[J]. Photonics Research, 2018, 6(6): 535-541. doi: 10.1364/PRJ.6.000535
    [105] KO S, LEE J, LEE J H. Passively Q-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe2 particles[J]. Chinese Optics Letters, 2018, 16(2): 020017. doi: 10.3788/COL201816.020017
    [106] LIU M L, OUYANG Y Y, HOU H R, et al. Q-switched fiber laser operating at 1.5 μm based on WTe2[J]. Chinese Optics Letters, 2019, 17(2): 020006. doi: 10.3788/COL201917.020006
    [107] ZHU X, CHEN S, ZHANG M, et al. TiS2-based saturable absorber for ultrafast fiber lasers[J]. Photonics Research, 2018, 6(10): C44-C48. doi: 10.1364/PRJ.6.000C44
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  4205
  • HTML全文浏览量:  1605
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-02-07
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回